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TECHNICAL TERMS 
Remote sensing The process of measuring and analysing present and historic imagery data 

from satellites with the aim to gain knowledge about location conditions, 
such as climate, land use, agriculture, air quality, water quality, etc. 

Resolution The spatial resolution of the imagery of satellites in meters. A resolution 
of 30m means that each pixel in the satellite image has a size of 30x30 
meters. 

Pixel A single picture element or raster point of an image. “This image is 400 x 
500 pixels wide”. 

Sentinel-2 Sentinel-2 is an Earth observation mission from the European Copernicus 
programme, that acquires high resolution (10m to 60m) multi-band data 
every 5-10 days on almost every place on Earth. It consists of two 
satellites, Sentinel-2A and Sentinel-2B 

Satellite bands A satellite collects imagery information on a number of frequency bands. 
In addition to the visible spectrum frequencies (Red, Green and Blue), 
data is collected in 10 additional bands, among which near infrared and 
short-wave infrared, which are sensitive to plant growth. 

Mosaic Image Satellites take individual photos of a certain size (around 290 km). 
However, some images cannot be used due to cloud cover. To help 
processing, one large ‘mosaic’ image is constructed from the best images 
in a given timeframe. This timeframe can cover many months. 

Raster data Other term for a geographically referenced image such as a satellite 
image, or other data that is expressed as a raster of pixels with values. 

Google Earth 

Engine 

Google Earth Engine is a cloud-based platform for planetary-scale 
environmental data analysis. It combines the access to peta-byte scale 
geospatial data sources, such as Sentinel-2, with the enormous data-
crunching capabilities of Google. 

Machine learning Using a computer to automatically build a mathematical algorithm based 
on training data, in order to make predictions or classifications, without 
being explicitly programmed to do so. Machine learning is used in a 
variety of tasks, such as computer vision, email filtering, financial fraud 
detection, etc.  
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Classification Using an algorithm to identify to which of a set of categories a data point 
belongs, on the basis of a training set of data containing data points of 
which the classification is known. For example: determining if an email is 
‘spam’ or ‘non-spam’, or if a given satellite image pixel shows irrigated 
or non-irrigated land. 

Random Forest A specific machine learning method to automatically create a 
classification algorithm from classified training data. Works on the basis 
of constructing a large number of decision trees, and combining their 
results. 

Decision Tree A predictive modelling algorithm that uses observations about an item to 
decide to which category it belongs. 

Ground truth 

data 

Data points that represent the ‘ground truth’ about a certain characteristic 
of a location, such as the fact if it is irrigated or not. Although the gold 
standard of ground truth data is to visit locations individually, in many 
cases ground truth data can be collected by manually studying very high-
resolution satellite imagery. 

Training data The part of the Ground Truth data that is used to train the machine 
learning model. Usually about 70% of the total data. 

Validation data The part of the Ground Truth data that is used to test the accuracy of the 
generated machine learning model. Usually around 30% of the total data. 
This data has not been used during the training. 

GeoTiff A file format for storing geographically-referenced imagery data. The 
classification process in Google Earth Engine results in GeoTiff files with 
the classification result for each pixel. 

Slippy web map A web standard for sharing maps online. It can easily be used for 
displaying a map on a website, as well as loading maps into GIS software 
such as ArcGIS or QGIS. 

Producer’s 
Accuracy 

The Producer's Accuracy is the map accuracy from the point of view of 
the map maker (the producer). This is how often are real features on the 
ground are correctly shown on the classified map. 

Consumer’s 
Accuracy 

The User's Accuracy is the accuracy from the point of view of a map user, 
not the map maker. The User's accuracy tells us how often the class on the 
map will actually be present on the ground. This is also referred to as 
reliability. 

 

ACRONYMS 
GIS Geographic Information System: computer software used to manipulate 

geographically referenced shape and raster data, such as maps and 
satellite data. 

AQUASTAT FAO’s global information system on water resources and agricultural 
water management.  

FLID Farmer Led Irrigation Development - a process in which farmers drive the 
establishment, improvement and/or expansion of irrigated agriculture, 
often in interaction with other actors: government agencies, NGOs, etc. 

WAPOR The FAO Water Productivity Open-access portal. Uses remote sensing 
technologies to monitor and report on agricultural water productivity in 
Africa. 

IMWI International Water Management Institute. 
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NDVI Normalized Difference Vegitation Index. Computed from Sentinel-2 
bands, the NDVI is an index sensitive to green vegetation. Used to 
enhance plant growth on satellite imagery. 

NDWI Normalized Difference Water Index. Similar to NDVI, but more sensitive 
to water stress in plants. 

EVI Enhanced Vegitation Index. Version of NDWI that corrects for some 
atmospheric conditions and canopy background noise. More sensitive to 
areas with dense vegetation. 

EVI_DIFF and 

NDWI_DIFF 

Terms used in this report that refer to month-on-month differences 
between EVI or NDWI values. Used as input for the machine learning 
algorithm. 

GEOBIA Geographic Object-based Image Analysis. Using a computer algorithm to 
automatically divide a satellite image in ‘regions’ or ‘objects’, such as 
fields or buildings. Further analysis is then performed on the resulting 
objects. This contrasts with normal Remote sensing analysis, in which 
analysis is performed per pixel. 

GFSAD30 Global Food Security-Support Analysis project. Identified agricultural 
areas in Africa (and other continents) at 30m resolution. 

GLCM Grey Level Co-Occurrence matrix. Raster data derived from satellite 
images that highlights texture and patterns present in the image. Used as 
an input for the machine learning process. 

SNIC Simple Non-Iterative Clustering. An image clustering algorithm 
implemented in Google Earth Engine. Can be used to identify ‘objects’ in 
images. 

QGIS Popular and open source Geographical Information System. Used to 
manipulate and analyse image and raster data. 

GADM Database of Global Administrative Areas (gadm.org). A popular and up-
to-date database of GIS data for administrative areas. 

NASA The American National Aeronautics and Space Administration 
FAO The Food and Agriculture Organisation of the United Nations. 
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EXECUTIVE SUMMARY 
This work forms part of the project “Diagnostic and future directions for Farmer Led 
Irrigation (FLID) in Chad and Mali”, which has the aim to assess the current extent of farmer-
led irrigation nation-wide in Chad and Mali, and assess the areas that are suitable for further 
growth. In both countries, farmer-led irrigation exists, but the extent is not well known. As a 
first step towards the characterization of FLID, this report focusses on the identification of 
total irrigated areas (both small-scale and large-scale) for the full territories of Chad and Mali, 
using remote sensing and machine learning, and identifying areas suitable for small-scale 
irrigation by using a multi-criteria model. Combining the areas of actual irrigation with 
suitable areas, we determine regional zones where expansion of irrigation has a high potential. 
 
In addition to this report, which presents the qualitative and quantitative results, we provide an 
online web map with the resulting maps, which can be found here. We conclude the report with 
a number of limitations of this study, and a list of recommendations for further work. 
 

AREAS UNDER IRRIGATION IN THE DRY SEASON 

We determined irrigated areas in Mali and Chad in the period Oct 2019 – June 2020, using 
Sentinel 2 satellite data and machine learning, at a 30m resolution. Sentinel 2 data currently is 
the most high-resolution multi-bandwidth satellite data publicly available, capturing 10m 
resolution imagery on average every 5 days in the region of interest. Historic data is available 
since June 2015. Google Earth Engine, which provides easy data access and powerful 
computation capabilities, was used to analyse the data. The choice of period (Oct-Jun) was 

https://practica-maps.s3-eu-west-1.amazonaws.com/index.html?id=1
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driven by data availability — outside those periods significant areas of both countries are 
covered with clouds due to the rainy season. Therefore, areas that are only irrigated outside 
that period are not identified by this method. 
 
We adopt a broad definition of irrigation as increased plant growth with respect to local 
natural conditions, in the period Oct-Jun. A total of 38 bands was used for the classification, 
including visible light, Near Infrared, and plant growth / water stress indicators (EVI and 
NDVI). A Random Forest machine learning algorithm was trained on 11.208 ground truth 
points in Mali, and 6354 points in Chad. In both countries, the data was split up into three 
climate zones to account for intra-country climate variability. The classification accuracy of 
the models was 95.6% for Mali, and 95.2% for Chad, indicating that the bands used provide 
sufficient information for an accurate classification of irrigated areas. 
 
Our estimate of areas under irrigation for Mali is 565.6 kha, which is in line with the most 
recent estimate from AQUASTAT (621.3 kha) for the total agricultural area under water 
management, which includes flood recession cropping areas, cultivated wetlands and inland 
valley bottoms (as explained in section 2.1). Of this area, 338.7 kha is larger than 500 ha, 82.6 
kha is between 100 – 500 ha, and 144.3 kha is smaller than 100 ha. In Mali, the area that is 
equipped for irrigation is 59.7% of the total area under water management according to 
AQUASTAT, showing that non-equipped flood recession, cultivated wetlands and valley 
bottoms play an important role in the total irrigated area.  
 
Our estimate for areas under irrigation for Chad is 104.7 kha. Of this area, 33.9 kha is larger 
than 500 ha, 20.2 kha is between 100 – 500 ha, and 50.6 kha is smaller than 100 ha. Our 
estimate is less than the recent estimate from AQUASTAT, which is 155.3 kha. As the 
present method of analysis only captured irrigation during the dry period, one possibility for 
the discrepancy is irrigation of crops during the wet season, such as rice, which usually starts 
in May or June. In Chad, the area that is equipped for irrigation is only 19.5% of the total area 
under water management according to AQUASTAT, showing that the role of flood recession, 
cultivated wetlands and valley bottoms plays an even greater role in Chad.  
 
For both countries, we provide a breakdown of irrigated areas by administrative boundaries. 
 

AREAS SUITABLE FOR IRRIGATION EXPANSION 

We used a multi-criteria scoring model to identify areas suitable for irrigation expansion. 
Input parameters used included surface water nearness, groundwater availability and aquifer 
properties, local slope, land use / land cover, national parks, and distance to cities. Three 
scenarios were used: one with surface water only, and two with surface water and 
groundwater at different depths. 
 
Depending on the scenario used, our estimate for areas suitable for irrigation expansion in 
Mali varies between 2200 – 6700 kha, which is in line with a recent study with a similar 
approach (IWMI 2019). An important limitation of this type of study is that it does not take 
into account the total additional amount of water that can be used from an environmental 
perspective. This hydrological constraint requires significant modelling, which is beyond the 
scope of this report. Studies that do incorporate this constraint typically find results for the 
total potential area that can be sustainably irrigated that are substantially lower than the 
results arrived at in this report for areas suitable for irrigation. In the case of Mali, studies that 
incorporate the hydrological constraint indicate that only about 30% of the suitable area can 
actually be used for irrigation in a sustainable way.  
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For Chad, our estimates for suitable areas depending on the scenario vary between 2000 – 
5900 kha. Studies that incorporate the hydrological constraint indicate that in Chad, only 
about 17% , of the suitable area can actually be used for irrigation in a sustainable way. This 
shows that in both countries, the actual amount of water that can be sustainably be used for 
irrigation forms an essential constraint for estimates of the total realizable irrigation potential.  
 
These results highlight the importance of distinguishing ‘suitable areas’ from the fully 
realizable potential of sustainable growth for irrigation. The latter needs a careful analysis of 
the hydrological water balance, possible groundwater depletion and downstream impacts.  
 
Due to the limitations of this type of modelling — additional local limiting conditions such as 
soil quality, land productivity, pollution, salinity, local ownership situation etc., are not taken 
into account — the results should be interpreted to identify overall suitable regions, and as a 
guide to select sites for more detailed consideration. 
 

CONCLUSIONS 

From our results, we conclude that remote sensing combined with machine learning performs 
well in the classification of irrigated areas in the dry season, provided that the local effects of 
irrigation can be clearly distinguished from natural processes. This is true for dry-season 
irrigation and locations with multiple crop cycles per year. In these cases, both large and small 
irrigated areas clearly stand out from nearby areas with natural growth, and are easily identified 
by the machine learning classification process.  
 
However, in cases where the plant growth closely resembles natural growth, such as in 
irrigation at the end of the wet season, flood recession cropping, or valley bottoms, using 
machine learning is less effective, and the irrigated area will be underestimated. Valley bottom 
and flood recession agriculture are both common in the studied countries. 
 
Using remote sensing and machine learning has the significant benefit that it is replicable over 
time, and can be automatically carried out over different periods, for example yearly, to 
determine trends. As the same set of ground truth data and the same trained model can be 
used over different years, this could be done by further automation of the process of 
classification developed in this report, by making use of a programming interface Google 
Earth Engine offers. Once set up, performing a new classification in a following year requires 
very little effort. In addition, historic trends can be identified by analysing historic Sentinel 
data.  
 
A further conclusion is that due to the variability in types of irrigation, irrigation schedules, and 
in-country climate variation, the training of a classification algorithm can only take place in a 
region of limited spatial extent. In this report, each country was divided in three climate zones, 
leading to a total of six different sets of training data and classification models. Further limiting 
the extent of analysis, for example per region in a country, would increase the reliability of the 
classification.  
 
In terms of the primary objective of the project — identifying the extent of farmer-led 
irrigation — we conclude that remote sensing methods as generally employed at the moment 
cannot make the distinction between small-scale and large-scale irrigation, due to their pixel-
based analysis nature. In addition, the variation in degree of clustering and nature of irrigation 
in flood recession, cultivated wetlands, and valley bottoms means that remote sensing data 
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alone does not contain enough information to specifically identify farmer-led irrigation as a 
category. In this study, we use the size of contiguous patches of pixels classified as irrigated 
as an indicator of the ‘size’ of an irrigated area. A different approach would be to manually 
identify large-scale irrigated areas, and to use these areas to deduce the FLID areas by 
subtracting them from the total areas as identified by the classification.  
 
Our main recommendation is twofold: 

1) Combine remote sensing-based analysis with other geospatial information on the 
location, management type and nature of different types of irrigation, such as maps of 
large-scale irrigation schemes and flood recession areas, as far as these are available 
from statistical bureaus in the given countries.  
 

2) Limit the regional extent of analysis. By focussing on smaller areas, for example 
regions in a country, the problems with climate variability are avoided, and results 
become more reliable. In addition, focus on individual irrigation types when these 
have specific characteristics, such as flood irrigation.  

 
For future work commissioned by the Bank, we think that most value will be obtained by 
always combining geographical layers with information on the location of large schemes, 
valley bottoms, flood recession irrigation, etc., with the information that can be derived from 
a machine learning classification.  
 
A web map of both the irrigated areas and areas suitable for irrigation is available here: 
 

Link to web map of Mali and Chad irrigated areas 

1. INTRODUCTION  
By 2050, food demands will increase by 60% to feed a population of nine billion people. While 
smallholder agriculture is the predominant form of farming in much of the developing world, 
agricultural production falls short of its potential due to lack of access and right to water for 
irrigation. 
 
Traditionally, investments in irrigation have focused on large-scale systems. This is reflected 
in statistics of countries, in which large-scale systems are usually present, but smallholder 
agriculture is underreported.  
 
Farmer-led irrigation development (FLID) is a concept that focusses on smallholder farmers, 
alone or as a collective, that drive irrigation development - meaning the establishment, 
improvement or expansion of irrigated agriculture by acquiring the necessary irrigation 
technologies and skills and developing output markets.  
 
Many actors, such as the World Bank, recognize the importance of FLID in increasing 
productivity and enhancing food security. Supporting FLID starts with a thorough, local 
understanding of the current extent, suitable areas, and overall potential for farmer-led 
irrigation, and many actors are actively involved in supporting country-level diagnostics of 
farmer-led irrigation extent and potential for upscaling. The Sahel Irrigation Initiative (SIIP, 
PARIIS in French), is such a major initiative that focusses on Burkina Faso, Mali, Mauritania, 
Niger, Senegal and Chad. 

https://practica-maps.s3-eu-west-1.amazonaws.com/index.html?id=1
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PURPOSE OF THE WORK 

In both Mali and Chad, farmer-led irrigation exists, but the extent is not well known. Current 
information, detailed below, is often of too coarse resolution, or does not make the distinction 
between irrigated and non-irrigated agriculture. The project "Diagnostic and future directions 
for Farmer Led Irrigation (FLID) in Chad and Mali", of which this report represents a first 
milestone, aims to assess the current extent of farmer-led irrigation in the whole territories of 
Chad and Mali, and assess the areas that are suitable for further growth.  
 
This report focusses on the identification of total irrigated areas using remote sensing and 
machine learning and identifying areas suitable for FLID-type irrigation by modelling. The use 
of remote sensing for the identification of irrigated fields holds the promise to make it easier to 
update data on irrigation on a frequent basis, for example every year. In addition, irrigation 
could be observed throughout a growing season, which would help the understanding of which 
modes of irrigation are practiced, and where.  
 
Secondly, the identification of areas suitable for FLID-type irrigation on a country scale is 
important as a guide to select promising areas for expansion. Detailed localized studies will 
always be necessary to cover the many factors that determine actual potential in any given 
location, the most important of which is the hydrological constraint. 
 

STRUCTURE OF THE REPORT 

Chapters 2 and 3 present the work on remote sensing and machine learning for the 
identification of irrigated areas. We present the result qualitatively on maps and quantify the 
irrigated area per region in each country. Chapters 4 and 5 present the identification of 
suitable areas for irrigation using a multi-criteria model. Three different scenarios are created 
covering different water availability conditions. By combining the areas of actual irrigation 
with areas of high suitability, we identify zones where irrigation expansion has a high 
potential. In Chapter 6, we discuss the results, and compare them to other studies. Chapter 7 
discusses next steps for this project, and we conclude with a list of general recommendations 
for further work in chapter 8. 
 

PRESENTATION OF RESULTS – WEB MAP 

To make the results of this study as accessible as possible, the maps were made available as a 
web map, and as a Web Map Service (WMS). The latter means that the map layers can be 
loaded in regular GIS packages such as ArcGIS and QGIS. Sharing the results as a web map, 
including the layers for areas suitable for irrigation, will make it easier for users to explore 
different regions. 
 

The web map is available here: 
 

Link to web map of Mali and Chad irrigated areas 

 

 

 

 

https://practica-maps.s3-eu-west-1.amazonaws.com/index.html?id=1
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2. ACTUAL IRRIGATED AREAS – DATA AND METHODOLOGY 

2.1. INTRODUCTION 

In this chapter we introduce the methodology that was used to determine irrigated areas in Mali 
and Chad, using satellite data and machine learning. However, we first start with an overview 
of existing map materials on the location of irrigated areas in these two countries. 
 
One of the authorative sources is AQUASTAT, the FAO database on irrigation information. 
The AQUASTAT statistics are partly based on maps that were produced by the FAO team.We 
obtained GIS data from prof. Stefan Siebert of University of Goettingen, who has been involved 

in calculating irrigated areas for both Mali and Chad for AQUASTAT. The material we 

received included a base map produced by the Ministry of Agriculture of Mali, a vector layer 

of irrigation projects, and a vector layer of irrigated areas.  
 

For Chad, the information obtained from prof. Siebert included a base map produced by the 

SDEA, a vector layer of irrigation projects, a vector layer of irrigated areas, and a layer of 

irrigated areas as produced by SDEA. Source documents include (SDEA 2001) and (UN-DSD 

2003). 

 

The maps for Mali and Chad are reproduced below, with the vector layers of known irrigated 

areas superimposed. From the maps, we can conclude that the irrigated areas are indicated 

without a lot of detail, and that they are therefore not very suitable to be used for a detailed 

account of the size and location of irrigated areas. However, they do serve as useful reference 

maps on the approximate location of large scale irrigation systems.  
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Figure 1. Map of irrigated areas in Mali. Source: Mali Ministry of Agriculture, FAO. 

Above: Map of irrigated areas in Mali. The outlines of the irrigated areas of the country were 
digitized from an irrigation map present in the AQUASTAT library (DNAER 2003), with 
additional information on 6 large schemes taken from the FAO irrigation map for Africa 
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(FAO 2005). The shapes of the boundaries of the digitized irrigation areas were improved by 
using satellite imagery. The map combines the different layers in a single map.  

 
Figure 2. Map of irrigated areas in Chad. Source: SDEA, FAO. 

Above: Map of irrigated areas in Chad. The position of the large schemes was taken from the 

FAO irrigation project database for Africa (FAO 2005). The remaining part of the irrigated 

area was assigned to zones of traditional or private irrigation and to palm groves as digitized 
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from an irrigation map (UN_DSD 2003) The shapes of the boundaries of the digitized 

irrigation areas were improved by using satellite imagery. The map combines the different 

layers in a single map.  

 

OTHER MAPS – AQUAMAPS, WAPOR, IWMI 

A number of maps exist that show the extent of irrigated area in Sahel countries. Examples are 
AQUAMAPS (FAO, 10km resolution), and WAPOR (FAO, 100m resolution), and IWMI 
(10km resolution). Images of AQUAMAPS and WAPOR are shown below. 
 
 

   
Figure 3. Left: AQUAMAPS, showing a part of Mali. Right: WAPOR 100m product 

 
One of the issues of the current maps is that they have a low resolution (with 100m as the 
minimum), which causes them to miss smallholder irrigation. In addition, the WAPOR product 
shows some categorization confusion between irrigated areas and riverine vegetation, as shown 
in the image below. This is in fact a common problem and can never be completely avoided 
when machine learning is used for classification. Other studies, such as the AQUAMAPS, 
suffer from the same problem. IWMI is currently conducting a study (as yet unpublished) on 
irrigated areas in West Africa, in which they try to reduce the classification confusion using the 
correlation between local rainfall and plant growth, which shows promising results. In this 
study, we reduce categorization confusion by using time series of EVI and NDWI. In chapter 
3, we quantify the magnitude of this classification confusion. 
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Figure 4. WAPOR detail of Mali, near Konodimini, showing the confusion of the machine learning 
algorithm between riverine vegetation and irrigated areas. White circles represent irrigated areas, 

while the orange circle represents riverine vegetation, which should not be classified as irrigated area. 

 
The FAO also offers a number of 30m resolution layers but only in limited areas, and not yet 
with an irrigated area classification. 
 
In the past years, a number of tools have come available that allow the analysis to take place at 
a higher resolution. Notably, the recent availability of high-resolution Sentinel-2 data, 
combined with the computational processing power of Google Earth Engine, have opened up a 
new world of possibilities. A recent PhD study (Vogels,2019) has taken the first steps towards 
a methodology that can identify and map small-scale irrigation for areas smaller than 1 hectare.  
 
In the same study, steps were made towards using Geographical Object Based Image Analysis 
(GEOBIA), which can be used to distinguish between small-scale and large-scale irrigation. 
Although promising, we were unfortunately unable to pursue this approach due to constraints 
in available resources. 
 
The method used in this report focusses on the identification of current irrigated areas during 
October – June, which corresponds to the end of the wet season up to the start of the next we 
season. The classification is done at 30 m resolution. The method combines an analysis of high-
resolution remote sensing data and ground truthing data. Machine learning classification is used 
to distinguish between irrigated land and other land uses. 
 

2.2 MACHINE LEARNING 

In this part of the study, we use Machine Learning to identify irrigated areas. Machine 
learning refers to using a computer to automatically build a mathematical algorithm based on 
training data, in order to make predictions or classifications, without being explicitly 
programmed to do so. Machine learning is used in a variety of tasks, such as computer vision, 
email filtering, financial fraud detection, etc. Specifically, we employ Random Forest, a 
machine learning method to automatically create a classification algorithm from classified 
training data. The result is an algorithm that can classify data, i.e. identify to which of a set of 
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categories a data point belongs, on the basis of a training set of data containing data points of 
which the classification is known.  
 
The training of the algorithm relies on ‘Ground Truth’ data: data points on specific locations 
with a known classification (either irrigated or not irrigated in the period of interest). 
Although the gold standard of ground truth data is to visit locations individually, in many 
cases ground truth data can be collected by manually studying very high-resolution satellite 
imagery, which was done in this study. 

 

In short, the process is: 
1. Collect ground truth data with a known classification (irrigated or not irrigated) 
2. Collect remote sensing satellite imagery bands 
3. Train the machine learning model with part (70%) of the ground truth data, using the 

satellite data 
4. Check the accuracy of the model with the remaining part (30%) of the ground truth 

data 
5. Use the model to classify every image pixel in the target area (here, Mali or Chad) 

 
The end result of this process is a map of the target area in which each pixel is given a 
classification. 
 

CLASSIFICATION AIM 

Our aim is to use machine learning and remote sensing satellite data to derive a land use map 
that distinguishes between two types: irrigated, and not irrigated.  
 
As in the rainy season the area of study is almost completely covered with clouds, no satellite 
data is available during that period. Therefore, the analysis is necessarily restricted to the period 
October-June, which covers the end of the rainy season, the dry season, and up to the start of 
the next rainy season. The classification irrigated or not irrigated therefore only applies to 
irrigation within that period. Fortunately, horticultural production under FLID mostly happens 
during the dry season, so this is captured. However, irrigation that happens during or at the end 
of the rainy season, will be underestimated. Areas that are only irrigated in the wet season will 
not be detected by this method. 
 
Detection of irrigation is here operationalised as detection of increased plant growth with 

respect to local natural conditions (local forest, shrubland, riverine vegetation, etc.), which is 
a good indicator of application of water. Recession agriculture — agriculture using residual 
moisture from receding floodwaters or seasonally flooded lands — is included in this definition. 
 

STATISTICAL DEFINITIONS OF IRRIGATION 

As we want to be able to compare our results to country statistics and other studies, we need 
to make the connection between definitions used in these studies and the machine learning 
classification in this report. For this, we follow the definition of FAO-AQUASTAT, for which 
we list the relevant terms with their definitions below: 
 
Irrigation potential — Area of land which is potentially irrigable. Country/regional studies 
assess this value according to different methods. For example, some consider only land 
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resources, others consider land resources plus water availability, others include economical 
aspects in their assessments or environmental aspects, etc.  
 
Area equipped for irrigation — Area equipped to provide water (via irrigation) to crops. It 
includes areas equipped for full/partial control irrigation, equipped lowland areas, and areas 
equipped for spate irrigation. 
 
Area equipped for irrigation: actually irrigated — Portion of the area equipped for 
irrigation that is actually irrigated, in a given year.  
 
Flood recession cropping area non-equipped — Areas along rivers where cultivation 
occurs in the areas exposed as floods recedes and where nothing is undertaken to retain the 
receding water.  
 
Cultivated wetlands and inland valley bottoms non-equipped — Wetland and inland 
valley bottoms that have not been equipped with water control structures but are used for 
cropping. They will have limited (mostly traditional) arrangements to regulate water and 
control drainage. 
 
Total agricultural water managed area — Sum of total area equipped for irrigation and 
areas with other forms of agricultural water management (non-equipped flood recession 
cropping area and non-equipped cultivated wetlands and inland valley bottoms). It is the sum 
of the three categories above: Area equipped for irrigation + Flood recession cropping area 
non-equipped + Cultivated wetlands and inland valley bottoms non-equipped 
 
As our classification method aims to identify all increased plant growth with respect to local 
conditions, we see that this corresponds most accurately tot the sum of Area equipped for 

irrigation: actually irrigated, Flood recession cropping area non-equipped and 

Cultivated wetlands and inland valley bottoms non-equipped. In section 6.3, we compare 
our results to country statistics and other studies, and AQUASTAT statistics. 
 

TYPOLOGY OF IRRIGATION 

In the Worldbank Sahel Irrigation Initiative Support project (SIIS), a typology of five 
different types of irrigation is used that are common in Sahelian countries. They are listed in 
the table below1. 
 
 

Table 1. Typology of irrigated areas. 

Type Description 

Small scale 

1 Improved rainwater harvesting with partial water control: inland valley 
bottom development (bas-fonds), flood recession plains or partial control 
(sometimes 1000s of ha), sand dams for groundwater recharge (seuils 

d’épandage). Crops are rice, sorghum and vegetables. 
2 Small-scale private irrigation systems (less than 1 ha up to a few hectares) for 

individuals or small groups of producers, involving pumping equipment, 
devoted to high value crops such as vegetables. 

 
 
1 Project information document Sahel Irrigation Initiative Support Project (report 
PIDA99932). 

http://documents1.worldbank.org/curated/en/801651506104671229/pdf/PID-Appraisal-Print-P154482-09-22-2017-1506104664776.pdf
http://documents1.worldbank.org/curated/en/801651506104671229/pdf/PID-Appraisal-Print-P154482-09-22-2017-1506104664776.pdf
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3 Small-scale community-based irrigation schemes of less than 50 ha, usually 
promoted by NGOs or governments, for villages or large groups of producers 
who collectively manage pumping equipment and canals to produce rice or 
vegetables. 

Large scale 

4 Large-scale irrigation schemes (from 100 ha to 5000 ha with a vast majority 
below 1000 ha) publicly financed, managed or supervised by public 
authorities, located usually along large rivers regulated by dams, comprising 
a combination of pump stations and a network of canal and drainage systems, 
service roads. They require a complex management structure. 

5 Medium- to large-scale irrigation schemes involving a partnership between 
the Government, a private party, and the communities surrounding the 
scheme, for the development and management of the irrigation system (with 
same technical features as for Type 4). 

 
To characterize the irrigated areas as classified in this report, we make the distinction of areas 
smaller than 100 ha, those between 100-500 ha, and those larger than 500 ha. 
 
Farmer-led irrigation, as understood in this report, is captured by types 1, 2 and 3. Whereas 
types 2 and 3 can be identified by considering their size, type 1 (valley bottoms, flood 
recession) presents the problem that it consists of small cultivated areas per farmer, but in a 
large overall area. This complicates the distinction of FLID by plot size. 
 

2.3. CHOICE OF METHODOLOGY 

Broadly speaking, there are two ways to analyse satellite data: pixel-based analysis and 
Geographical Object Based Image Analysis (GEOBIA). We briefly explain both approaches 
below before motivating our choice for the first type. 
 
Pixel-base analysis performs a machine-learning classification on individual satellite image 
pixels, using raw bands (such as red, green, blue, near infrared), other bands such as slope and 
rainfall, and computed bands such as Enhanced Vegetation Index. Studies that use this 
approach mainly differ in the exact number and choice of bands that was used, and in the 
resolution of the satellites used (Modis at 250m resolution vs Sentinel-2 at 30m resolution for 
example). A notable example is the work of the International Water Management Institute 
(IWMI), which has performed numerous studies on the extent of irrigated areas in Asia and 
Africa2,3. 
 
The second method is more recent and makes use of Geographical Object Based Image 
Analysis (GEOBIA). This methodology relies on the segmentation of a satellite image into 
‘objects’: small contiguous areas of land that are similar, such as individual fields or 
buildings. Machine learning is then performed on those objects. Two notable examples of the 
latter are the Global Food Security-Support Analysis Data at 30 m (GFSAD30) project 
(Xiong, 2017) that created a map for cropland extent for all of Africa, and a recent PhD study 
by M. Vogels, which mapped irrigated areas in Ethiopia (Vogels, 2019).  
 

 
 
2 Web map of irrigated areas in Africa and Asia by IWMI, unfortunately unavailable at time of writing 
of this report. 
3 Global Irrigated Area Mapping, IWMI, 2000. 

http://waterdata.iwmi.org/applications/irri_area/
http://waterdata.iwmi.org/Applications/GIAM2000/
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A number of considerations have led us to choose the first approach – pixel-based analysis. 
The first consideration is that the GEOBIA approach is still experimental, and results have not 
been adequately validated yet. It is therefore not quite clear if it forms an actual improvement 
over the pixel-based approach. In addition, the GEOBIA approach relies on an intensive 
processing step in which shapes are identified – a step that is performed by high-cost 
proprietary software, that was unavailable to us. Finally, both the author of the recent PhD 
study, as well as her University group, were unable to assist us. 
 
When a pixel-based Machine Learning algorithm is used to identify irrigated and non-irrigated 
areas, it is not possible to make the distinction between large scale and small-scale irrigation 
because the pixel-based method has no concept of shape. Therefore, automated recognition of 
large-scale versus small-scale irrigation is not possible in this methodology. 
 
To get around this problem, one option is to manually compose a GIS layer with the locations 
and extent of the large-scale irrigation schemes, flood recession cropping areas, and cultivated 
wetlands and inland valley bottoms. However, we have not been able within the timeframe of 
this study to locate or produce such a map. 
 
As an alternative solution, we look at the size of contiguous areas of pixels that have been 
classified as irrigated, and use the size of these patches as the ‘size’ of the irrigated area. This 
is not a perfect solution, as the classified irrigated areas can be highly fragmented. However, as 
the results will indicate, this method was successful in identifying the large irrigation schemes. 
 
 

2.4. CHARACTERIZATION OF THE RAINFALL AND GROWING SEASON 

To identify irrigated areas, we make use of the known patterns of rainfall and the growing 
season. The figures below show the monthly rainfall for Mali and Chad, which are very similar. 

 
Figure 5. Left: Monthly rainfall in Mali, right: monthly rainfall in Chad. Source: Earthwise, British 

Geological Survey.4 

Information on the main growing seasons, which is shown below, shows significant differences. 
In the case of Mali, crops are grown in different growing seasons, both in the wet season and 
the dry season. In Chad on the other hand, the main growing seasons are concentrated in the 
wet season. As this study relies on data in the dry season mainly, this might affect the 
completeness of the result, as areas that are only irrigated in the wet season cannot be detected 
through our method.  
 

 
 
4 earthwise.bgs.ac.uk/index.php/Climate_of_Mali and earthwise.bgs.ac.uk/index.php/Climate_of_Chad 
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Figure 6. Left: growing season of main crops in Mali. Right: Chad. Source: FAO GIEWS country 

briefs 

 
It is important to note that the tables above don’t capture the full range of agricultural 
production. Small-scale horticulture, which is a large component of farmer-led irrigation, is 
usually practiced in the dry season in both countries. 
 
The natural vegetation follows two main patterns: Away from water bodies, the vegetation 
follows the rain pattern. Near water bodies or rivers, the vegetation follows the availability of 
water in the water body or river. Irrigation takes place at multiple times: both to prolong the 
growing season at the end of the rainy season, but also in the dryer months. This difference in 
irrigation periods can be an issue during classification, especially in the case where after-rainy 
season irrigation is compared to riverine vegetation that is also abundant in the same period. 

2.5. DATA COLLECTION 

As our period of analysis, we choose October 2019 until June 2020, thus capturing the end of 
the rainy season, the dry season and the start of the next rainy season. We use Sentinel-2 Top-
Of-Atmosphere reflectance imagery, at 10 m resolution. Sentinel-2 represents the best current 
option for remote sensing, because of its superior resolution, revisit time (days between images 
of a given location), and number of bands. As the 10m resolution data was found to have too 
much spectral variability, the data was aggregated to 30m resolution by local averaging.  
 
As our data processing platform, we chose Google Earth Engine, a cloud-based platform for 
planetary-scale environmental data analysis. It combines the access to peta-byte scale 
geospatial data sources with the enormous data-crunching capabilities of Google. It also offers 
easy access to many data layers, including the Sentinel-2 satellite data. 
 
Several intermediary products are derived from the Sentinel data. First of all, a dry season 
(December - March) mosaic is created from the lowest-cloud percentage images for the blue, 
green, red, NIR and SWIR bands.  
 
Secondly, monthly mosaic images are created for two indices: The Enhanced Vegetation Index 
(EVI)6, and the Normalized Difference Water Index (NDWI)7. The EVI index is directly 
sensitive to vegetation – it measures the ‘greenness’ of the plants. The NDWI is more sensitive 

 
 
6 en.wikipedia.org/wiki/Enhanced_vegetation_index 
7 en.wikipedia.org/wiki/Normalized_difference_water_index 
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to the plant water content and is therefore strongly correlated to water stress. In addition, we 
include the standard deviation of the EVI index over the full year. 
 
One issue with creating EVI and NDWI indices is that due to extensive cloud cover during the 
rainy season (July-September), in some cases no imagery is available during an entire month. 
As the classification is mostly sensitive to the EVI and NDWI outside of the rainy season, we 
removed the rainy season periods from the analysis. Experiments using alternative satellite 
sources that are not sensitive to cloud cover (Sentinel-1 Synthetic Aperture Radar) showed that 
this did not lead to a sufficient classification accuracy. The synthetic aperture radar data by 
itself does not contain enough information to distinguish between irrigated and non-irrigated 
crops. As the Sentinel-2 data is needed for an accurate classification, the period of analysis 
needed to be restricted to relatively cloud-free periods. In these periods, it was found that 
including the Sentinel-1 data did not increase the classification accuracy, and therefore it was 
omitted. 
 
Thirdly, we are not only interested in the absolute monthly values for these indices, but also in 
the changes from month to month, as this should be closely related to plant growth. When the 
EVI value increases in three consecutive months in the dry season, this is a strong indication 
that irrigation is applied. Therefore, we include pair-wise differences between consecutive 
monthly values. For example, if NDWI1 and NDWI2 represent the NDWI values in January and 
February, we also include NDWI1 - NDWI2 as a variable.  
 
In addition to these products, a number of spatial pattern bands are added, which capture the 
spatial structure and texture in the immediate vicinity of pixels. These are computed using the 
Gray Level Co-Occurrence Matrix (GLCM) method. The reason for including these layers is 
to make use of the fact that agricultural areas often have a different texture than natural areas, 
such as riverine vegetation. 
 
In total, 38 bands were used for the classification, as listed in the table below. The period 
column indicates the period over which the data was aggregated. These bands were chosen from 
a much longer list that included, in addition to the bands mentioned above, all 13 Sentinel-2 
bands, all 16 GLCM bands, 7 bands on rainfall and temperature, and 3 Sentinel-1 synthetic 
aperture bands. Using a Random Forest sensitivity analysis, those bands were chosen that have 
the most predictive power for the classification of irrigated areas. 
 
 

Table 2. Satellite bands used for machine learning. 

Variable Number Source Period 
Red, Green Blue, NIR, 
SWIR 

5 Raw data from 
Sentinel-2 (B4, B3, 
B2, B8, B11) 

Median of Dec 2019 – Mar 
2020 

EVI_StdDev 1 Computed EVI index Standard deviation Jun 2019 
– Jun 2020 

EVI_0 … EVI_7 8 Computed EVI index Median of monthly data, Oct 
2019 – May 2019 

EVI_diff_1 … EVI_diff_7 7 Differences of 
computed EVI index 

Differences of consecutive 
monthly EVI index, Nov 
2019 – May 2019 

NDWI_0 … NDWI_7 8 Computed NDWI 
index 

Median of monthly data, Oct 
2019 – May 2019 
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NDWI_diff_1 … 
NDWI_diff_7 

7 Differences of 
computed NDWI 
index 

Differences of consecutive 
monthly NDWI index, Nov 
2019 – May 2019 

SWIR_var 1 GLCM texture 
variance of SWIR 
band 

Median of Dec 2019 – Mar 
2020 

NDWI_1_var  GLCM texture 
variance of NDWI 
band 

Median of Nov 2019 

Total bands 38   

 
In an earlier stage of this study, we also included Sentinel-1 radar imagery. However, we found 
that these bands didn’t lead to a higher accuracy in the classification, and therefore they were 
removed again from consideration. 
 

2.6. PRE-PROCESSING 

The sentinel-2 satellite has a spatial resolution of 10 meters. The high resolution is useful, but 
also leads to some spectral variability (noise). To reduce this noise, we smooth the satellite 
image by local averaging, leading to a final resolution of 30m. 
 

2.7. COLLECTING GROUND-TRUTH DATA - IDENTIFYING IRRIGATED AREAS 

For this study, we relied on identifying irrigated areas remotely. This is possible, as irrigation 
usually is readily apparent from the EVI and NDWI curves at a specific location. This is 
illustrated in the charts shown below.  

 
Figure 7. Left:image of Office du Niger, showing circular irrigated areas. The blue dot is located 

outside the circles, the orange dot is located inside a circle. Middle graph: NDWI plot corresponding 
to the blue dot, outside the irrigated area. The negative level for most of the year indicates limited 

plant growth and water stress. Graph on the right: NDWI plot corresponding to the orange dot, inside 
an irrigated area. During almost the whole year, there is no water stress. The sharp break that is visible 

at the start of March represents the harvest. 

 
To facilitate the indication of irrigated areas, we created a small application in Google Earth 
Engine that displays the full EVI and NDWI curves over a given period (so no monthly 
averaging) at a certain location. In this way, manual inspection of both high-resolution imagery 
can be combined with inspecting the EVI and NDWI curves at a single location. This data has 
proven to be essential for a correct classification of the ground truth data. A screenshot of this 
application is shown below, with the EVI and NDWI curves shown on the left. Additional 
examples are shown in below. 
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Figure 8. Google Earth Engine application to assist identification of irrigated areas. Left (under the 
‘two chart inspector’): the EVI and NDWI charts over the period 2019-2020. Further examples are 

provided below. 

As an illustration, below we provide some examples of this data for different regions of Mali 
and Chad. All the satellite images were taken in February. 
 
It is clear that the periods during which irrigation is applied differ substantially from one 
location to another. For example, the Konodimini data shows a growth pattern with a single 
peak, starting in September and ending in January. The Bamako region has two pronounced 
and shorter growing seasons, one stretching from July to October, and one from December to 
March. The Office du Niger data, which was taken from a circular irrigation scheme, show a 
prolonged growing season that stretches from May until February.  

 

Mali - Konodimini 
In this area, the EVI curve indicates that crops are grown in the November – January period. 
This is the same area as the WAPOR image above. Note the large difference in the NDWI 
curves. 
 

Table 3. EVI curve examples near Nonodimini, Mali. 

 Natural colours: 
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Not irrigated : in brown area in the middle 

 
 

Irrigated : In green area in lower left 
corner: 
 

 
 

 

Mali - Bamako 
In this area near the Niger in the vicinity of Bamako, the EVI curve indicates irrigation in the 
dry season, starting in December. 
 

Table 4. EVI curve examples near Bamako, Mali. 

 
 
 
 
 
 
 
 
 

Natural colors 
 
 



   P a g e  | 28 

Not irrigated 

Just outside the irrigated area: 

 
 
 

Irrigated 

Inside one of the dark green rectangles: 

 

 

 

Mali - Office du Niger 
In the irrigation circles in the Office du Niger, we see that irrigation is applied all through the 
dry season. 

Table 5. EVI curve examples near Office du Niger, Mali. 

 Natural colors 
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Not irrigated : Outside irrigation circle 

 

 

Irrigated : Inside irrigation circle 

 
 
 

 

 

Mali - Sikasso  
In this region, river water is used for irrigation. We see both long and short cropping periods. 
 

Table 6. EVI curve examples near Sikasso, Mali. 

 

Natural colors  
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Not irrigated : Outside of irrigation area 

 
 

 

Irrigated: In green area 

 
 

 

Chad – Lake Chad  
Table 7. EVI curve examples near Lake Chad, Chad. 

 

 

Natural colors  

 
 

 

Not irrigated : Outside of irrigation area 
 

Irrigated: In green area 
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Chad – Sarh  
Table 8. EVI curve examples near Sarh, Chad 

 

Natural colors  

 
 

Not irrigated : Outside of irrigation area 
 

 

Irrigated: In green area 
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Chad – Diour 
Table 9. EVI curve examples near Diour, Chad 

 

Natural colors  

 
 

Not irrigated : Outside of irrigation area 
 

 

Irrigated: In green area 
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These examples just serve to indicate the typical quality of the EVI and NDWI data available, 
as well as to show the variability of data in different areas in the country. 
 

2.8. GROUND TRUTH DATA 

As detailed in section 2.7, ground truth data was collected using manual inspection of high-
resolution Google imagery of a given location, combined with inspecting the timeseries of the 
EVI and NDWI indices of a given location. Together, this data provides enough information to 
correctly classify the location as either irrigated or not-irrigated. 
 
During the identification process, both the high-resolution (5m) Google Earth background map 
is used, as well as EVI layers for the months of December – April. In addition, EVI and NDVI 
curves can be inspected for a specific point, which usually allows a clear identification of 
whether agricultural land has been irrigated or not, as shown in the previous section. In other 
cases, the nature of the land use is clear from other visual aspects, such as small islands in rivers 
or inside forest areas. This leads to a high degree of confidence of the manual classification of 
the points, even though only remote data was used. 
 
The points that are most difficult to classify in this way are those that lie inside flood recession 
areas or valley bottoms. In these locations, natural growth has a very similar satellite spectral 
signature when compared to irrigated plots. This is one of the main limitations of the present 
method, and can only be solved by in-country field visits for ground truthing. 
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In total, 11.208 points were identified in Mali, of which 3569 were areas that were identified to 
have been irrigated during the Oct-Jun period, and 7639 were identified as areas that were not 
irrigated in the same period, as was determined with the method described above. In the case 
of Chad, 6354 points were identified, of which 2009 were irrigated areas, and 4345 were non-
irrigated areas. 
 
In the choice of training points, a number of considerations were used. First of all, points were 
chosen to cover all the main land use and land cover classes, such as forest, shrubland, cities, 
villages, rivers and riverine vegetation, desert, etc. Secondly, points were chosen to cover the 
different methods of irrigation, such as flood and recession irrigation, small plots, large circular 
schemes, etc. Finally, care was taken to cover the different climate zones. The typical spread of 
training points is shown in the image below. Here, we look at a large irrigation scheme in Mali, 
the Office du Niger. 
 

 
Figure 9. Typical selection of ground truth points, showing a large irrigation scheme in Mali, the 
Office du Niger.  Red points are identified as not-irrigated, green points are identified as irrigated. 

 

2.9. MACHINE LEARNING MODEL 

To classify the image, we used a Random Forest model consisting of 75 trees. As described 
above, Random Forest is a specific machine learning algorithm, that is well suited for 
classification of data points in categories and is the most used algorithm for this type of task. 
The principle behind a Random Forest model is that it creates a large set of decision trees 
using different (random) subsets of the data bands and training points and uses these 
individual trees to form a ‘majority opinion’. A decision tree is a simple predictive modelling 
algorithm that uses observations about an item to decide to which category it belongs using a 
series of ‘yes-no’ decisions. 
 
Due to this process of combining different trees, quirks of the individual decision trees even 
out, and the end result is an algorithm that performs better than any individual decision tree. A 
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predictive modelling algorithm that uses observations about an item to decide to which 
category it belongs. 
 
Among the positive properties of a Random Forest model is the fact that it is not necessary to 
scale variables (bands), and that multiple variables that have a strong mutual correlation do 
not present a problem. The Random Forest model is trained and used in Google Earth Engine. 
 
Different models were trained for Mali and Chad, using the ground truth data points for each 
separately. With the separation in climate zones described below, a total of 6 models were 
trained. 
 
To perform the machine learning process, the ground truthing data is split into two parts: 
training and validation data: 70% was used to train the machine learning model, and 30% was 
used for validation. These percentages are commonly used in machine learning. It balances the 
need for enough data to train the model with a low degree of variance in the measured accuracy. 
To make sure this split does not influence the results, we also trained the model with a 80:20 
and 90:10 split, leading to similar results for the accuracy. In the results below, we only report 
on the 70:30 split. 
 

CLIMATE VARIABILITY 

One important issue is the variability of the climate across both Mali and Chad: from warm 
desert climate in the north, to tropical savanna climate in the south. The local climate has, 
naturally, a large impact on the behaviour of the observed bands such as EVI and NDWI. In 
addition, the local climate has an impact that gradually varies with the latitude. This type of 
spatially varying variables is not handled well by the Random Forest methodology. This was 
confirmed during an earlier stage of this work, where an attempt was made to address this by 
introducing climate-related variables, such as local rainfall, and local average temperature. 
However, this did not lead to a satisfactory result.  
 
The solution we chose for this report is to reduce the variation in the training set by separating 
the country into three climate zones: upper, middle, and lower. In this way, the inter-set 
variability is reduced. This is also the approach taken by other efforts, such as the Global 
Food Security Analysis-Support data at 30 meters (GFSAD30) project8. The climate zones 
used are shown below. 

 
 
8 croplands.org 
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Figure 10. Left: climate zones of Mali. Right: climate zones of Chad. Source: Köppen climate 

classification9. To optimize the classification result, we train a model for each of three climate zones. 

 

2.10. COMPUTATION OF RESULTS 

The training of the Random Forest model on the ground truth data is a very quick process that 
takes only a few seconds. The next phase is to classify every pixel of the target area, which in 
this case spans the entirety of Mali or Chad. As we perform our classification on a 30m 
resolution, this is a large computational task that is very memory intensive. We use Google 
Earth Engine to perform this classification, and this platform has limitations on the maximum 
memory that can be used for single tasks. Therefore, to do the complete classification, we need 
to divide the task into smaller sub-tasks, each covering a small part of the country. To do this, 
the Mali and Chad regions were divided into 1° x 1° squares, each corresponding to an area of 
about 12,200 square kilometres. 
 
For each square, it was determined in which climate zone the majority of its surface lies, and 
the appropriate model is trained. Although one might expect this sharp boundary to lead to 
visible edges in the classification, this was not observed in practice. All squares are classified 
in this manner, at 30m resolution. After all squares are completed, they are reassembled to form 
the final result. 
 

 
 
9 en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification 
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Figure 11. Grid of 1x1 degree squares used for the classification process of Mali. 

 

2.11. EXAMPLE OF RESULTS 

The quantitative results of the classification are presented in chapter 3 of this report. Below, 
we show a qualitative result of a small section near the Niger river. 

   
Figure 12. Left: part along the Niger river, showing irrigated fields of approximately 20 x 20 meters. 

Right: Same region, with classification result. 

 

2.12. POSTPROCESSING 

As a final step, we post-process the classification result to remove noise. We do this by applying 
a morphological opening and closing operation, both at a kernel circle of 30 meters. This has 
the effect to remove individual isolated pixels, as well as close pixel-sized holes. The 
justification of this operation is twofold. First of all, the removed areas correspond to areas with 
a size of 30x30 meters, or just 0.09 hectares. This is considerably smaller than average 
smallholder field. Secondly, irrigated areas, also when they consist of small fields, are highly 
clustered. In practice, this operation removes noise in forest areas, where often individual pixels 
in a forest area are being wrongly classified as being irrigated. 
 
The effect of this operation is shown qualitatively below. Importantly, we don’t use any rule-
based post processing, such as removing areas far away from surface water — the post 
processing we use is merely focussed on removing single pixels and closing small holes. 
Applying this processing step was checked to have an effect on the end result below 1%. 
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Figure 13. Effect of noise removal by modal filter and morphological opening and closing. Left: 

original classified image. Right: image after noise removal. 

 

2.13. DISTINCTION BETWEEN SMALL-SCALE AND LARGE-SCALE IRRIGATION 

Until now, we have described the methodology to distinguish areas that are irrigated from areas 
that are not. However, the overall aim of the project is to identify areas under irrigation that are 
farmer-led, which for the purpose of this study is mostly expressed through a small field size. 
The issue is that the machine learning algorithm we employ does not look at the size of fields, 
but only to the spectral characteristics of each pixel. Therefore, information on the field size is 
not obtained. 
 
We are aware of a number of studies that have tried to do this, in particular the recent PhD study 
by M. Vogels (2019) . The methodology is called Geographic Object-based Image Analysis 
(GEOBIA), and it uses a segmentation of the image before classification is attempted. The 
method is highly experimental, and currently uses proprietary software (eCognition) that we 
had no access to. Although the results in that study were encouraging, in the end the authors 
could not yet demonstrate the accuracy of the approach. Given the time limitations for this 
study, we decided to not further pursue this route.  
 
As image segmentation for remote sensing is an active field of research, it is probable that this 
methodology will make progress in the near future. One interesting development is that Google 
Earth Engine now also offers functionality for image segmentation (SNIC), although of a 
simpler nature than the eCognition software mentioned above. In addition, some researchers 
are employing graphics-card accelerated methods to perform image segmentation on smaller 
areas (Donchyts, 2017). For future work, the large-scale automated recognition of the size of 
small irrigated fields remains an interesting and hopefully viable option. 
 
In the absence of a viable GEOBIA approach, one option to distinguish between small-scale 
and large-scale agriculture is to identify the location and extent of the large-scale schemes, 
flood recession cropping areas, and cultivated wetlands and inland valley bottoms using GIS 
information from government sources. However, in the timeframe for this report we have been 
unable to locate or produce such a layer. 
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As a second solution, we use the size of contiguous patches of pixels classified as irrigated as 
the ‘size’ of the irrigated area. Although this method is not perfect, as classified irrigated areas 
can be fragmented, this method give a good overall result in separating large, middle and small 
scale irrigated areas. Here, we consider areas smaller than 100ha to be small-scale, 100-500 ha 
to be medium-scale, and areas larger than 500 ha as large-scale. 
 
As an example, the images below shows a region of the Niger river near Segou, and a region 
near Bamako. The green areas are identified as ‘large scale’, the red areas as ‘small scale’. 
 
 

 
Figure 14. Irrigated areas near Segou. Green: three areas consisting of connected pixels, identified as 

‘large scale’, Red: small-scale areas. 
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Figure 15. Irrigated areas near Bamako. Green: two areas consisting of connected pixels, identified as 

‘large scale’, Red: small-scale areas. 
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3. ACTUAL IRRIGATED AREAS - RESULTS 

3.1. IRRIGATION CLASSIFICATION 

After training the machine learning method in the way described in chapter 2, we need to assess 
the accuracy with which it can distinguish between irrigated ground data points and non-
irrigated points. To assess the quality of a classification, the validation part (30%) of the total 
available ground truth data is used. This data has never seen by the model, so it is a fair 
assessment of the accuracy. The training data is never used for accuracy validation, because the 
model has been trained using this data, and can therefore potentially ‘remember’ the right 
classification. This is called overfitting – and it is particularly a risk when very large numbers 
of bands and trees in the Random Forest model are used. Using the validation data circumvents 
this problem. 
 
The accuracy of a classification is expressed using different numbers. First of all, there is the 
overall accuracy: the percentage of points that was classified correctly. This is derived from the 
classification table – a table that lists the number of points that were classified, and how they 
were classified. These are shown below. 
 
However, this is often not the most interesting number. What we would like to know is first of 
all: which percentage of points that are actually irrigated have been correctly classified as 
irrigated? This is called the Producer’s Accuracy. It indicates how well we can recognise 
actual irrigated areas. However, it says nothing about false positives: points that were not 
irrigated but were wrongly classified as such. 
 
That is why we are interest in a second number: which percentage of the points that have been 
classified as irrigated actually are irrigated. This is called the Consumer’s Accuracy, and it 
includes the effect of false positives. Both of these numbers can be calculated from the 
classification result. Below, we list these numbers for each of the regions in Mali and Chad. 
This indicates how much trust we can have in the classification.  
 
To illustrate these numbers, we look at the table for North Mali. Here, we had 326 ground data 
points that were actually irrigated. When these were classified, 26 points were classified as non-
irrigated, and 300 were classified as irrigated, leading to an accuracy percentage of 92.0%. This 
corresponds to the Producers Accuracy. On the other hand, of the 309 points that were actually 
classified as irrigated, 300 really were irrigated but 9 were mislabelled, leading to an accuracy 
percentage of 97.1%. This corresponds to the consumers accuracy. 
 
North Mali: 

Table 10. Classification accuracy for North Mali. 

  Classified data 

 
 non-

Irrigated 

irrigated Total 

Ground truth data  
non-Irrigated 437 9 446 
irrigated 26 300 326 
Total 463 309 772 

     
Overall accuracy 95.5%    
Producer’s accuracy 92.0%    
Consumer’s 
accuracy 

97.1%    
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Middle Mali:  

Table 11. Classification accuracy for Middle Mali. 

  Classified data 

 
 non-

Irrigated 

irrigated Total 

Ground truth data 
non-Irrigated 797 14 821 
irrigated 38 345 383 
Total 835 369 1204 

     
Overall accuracy 95.6%    
Producer’s accuracy 90.1%    
Consumer’s 
accuracy 

96.1%    

 
 
Southern Mali: 

Table 12. Classification accuracy for South Mali. 

  Classified data 
  non-Irrigated irrigated Total 

Ground truth data 
non-Irrigated 988 8 996 
irrigated 52 303 355 
Total 1040 311 1351 

     
Overall accuracy 95.6%    
Producer’s accuracy 85.4%    
Consumer’s accuracy 97.4%    

 
The overall accuracy for Mali is good, with all three values over 95%. We see that in the case 
of South Mali, the producers’s accuracy is clearly lower, with 85.4%. This is caused by the 
widespread presence of forests in Southern Mali, which lead to confusion between forest and 
irrigated areas during the classification.  
 
 
North Chad: 

Table 13. Classification accuracy for North Chad. 

  Classified data 
  non-Irrigated irrigated Total 

Ground truth data 
non-Irrigated 370 7 377 
irrigated 17 132 149 
Total 387 139 526 

     
Overall accuracy 95.4%    
Producer’s accuracy 88.6%    
Consumer’s accuracy 95.0%    
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Middle Chad:  
Table 14. Classification accuracy for middle Chad. 

  Classified data 
  non-Irrigated irrigated Total 

Ground truth data 
non-Irrigated 411 18 429 
irrigated 27 250 277 
Total 438 268 706 

     
Overall accuracy 93.6%    
Producer’s accuracy 90.3%    
Consumer’s accuracy 93.3%    

 
 
Southern Chad: 

Table 15. Classification accuracy for Southern Chad. 

  Classified data 

 
 non-

Irrigated 

irrigated Total 

Ground truth data 
non-Irrigated 506 1 507 
irrigated 15 93 108 
Total 521 94 615 

     
Overall accuracy 97.4%    
Producer’s accuracy 86.1%    
Consumer’s 
accuracy 

98.9%    

 
The overall accuracy for Chad is good, with values between 93.6% and 97.4%. However, we 
see that in the case of North Chad (which includes Lake Chad), the producer’s accuracy is 
clearly lower at 88.6%. This is caused by the fact that at Lake Chad water recession agriculture 
is practiced, which leads to confusion in the classification as the natural vegetation growth 
follows the same temporal pattern as the agricultural crops. 
 
For both countries, we see that the producer’s accuracy is lower than the consumer’s 
accuracy. This means that the model is conservative during the classification process, 
mislabelling some points as non-irrigated that are actually irrigated. This strict rejection 
process causes the resulting final (consumer’s) accuracy to be high, at the expense of missing 
some irrigated points. 
 

CONTRIBUTION OF BANDS 

To get an idea which input bands — both the raw satellite bands such as red, green, and blue, 
and the derived bands such as NDVI and EVI) — contribute most to the classification, we 
investigate the correlation and band importance. First of all, the correlation between the 
different bands is shown below. 
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Figure 16. Left: bands clustered by correlation. Right: full correlation table. Blue: low correlation, 

yellow: high correlation. 

 

From this image, we can identify two things. First of all, there is a quite a strong correlation 
between a number of bands, especially for the monthly differences of the index variables for 
EVI and NDWI (for example, EVI_DIFF_3 and NDWI_DIFF_3). However, as Random 
Forest handles strongly correlated features well, this is not a cause of concern. It does mean 
that we probably don’t need all the 38 features that we use at the moment. Secondly, the raw 
colour bands (B2, B3, B4, B8, B11) show strong internal correlation, but little correlation 
with other bands.  
 
Secondly, we can look at the contribution of each of the bands to the classification accuracy. 
We do this by looking at the feature importance as reported by the Random Forest algorithm, 
which measures the GINI impurity reduction achieved by each feature. The result is shown 
below. 

 
Figure 17. Feature importance for the Random Forest model. Higher bars are more important features. 
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From this graph, it is clear that the monthly difference indexes such as NDWI_DIFF_4 and 
EVI_DIFF_7, are the most important features. This can be intuitively understood, as these 
features capture plant growth in the dry season, and just before the rainy season. It should be 
kept in mind that a low score in this graph does not necessarily mean that a feature has no 
importance. If two features are strongly correlated, it can happen that one is given a high score, 
but once it is ‘used’ by the model, the other feature doesn’t add any new information and is 
therefore given a low score. It is therefore not straightforward to delete features, as there can 
be benefits in retaining correlated features. As the Random Forest model does not have any 
restrictions in the number of features used, it was decided to keep the full set in the final 
classification computation. However, this has to be balanced to the increased computational 
and memory cost of an increased number of bands. In practice, we chose a cut-off of 38 bands 
as the limit what was computationally feasible. 
 

3.2 QUALITATIVE CLASSIFICATION RESULTS 

Below, we show the classification results of the same areas as were listed in Chapter 2. Here, 
we show the result of the actual classification, with the postprocessing (of morphological 
opening and closing). 
 
 

Mali - Konodimini 
Table 16. Classification result near Konodimini, Mali. 

  
 

Mali - Bamako 
Table 17. Classification result near Bamako, Mali. 
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Mali - Office du Niger 
Table 18. Classification result near Office du Niger, Mali. 

 

 

 

Mali - Sikasso 
Table 19.  Classification result near Sikasso, Mali. 

  
 

Chad – Lake Chad  
Table 20. Classification result near Lake Chad, Chad. 
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Chad – Sarh  
Table 21. Classification result near Sarh, Chad. 

 

 
 

 

 

 

Chad – Diour  
Table 22. Classification result near Diour, Chad. 

 

 
 

 

 

 
 
The full map of irrigated areas in Mali is shown below. 
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Figure 18. In green: irrigated areas in Mali as determined by the machine learning classification. 

 
The map above reflects the actual surface areas. However, as irrigated areas are small when 
compared to the full country, the areas are hard to distinguish in the map. Therefore, in the map 
below we have enlarged the areas to improve the visibility. It should be kept in mind that this 
map serves to indicated the locations of the irrigated areas, but does not reflect the actual surface 
areas. 
 
In addition, the irrigated areas are divided into three categories: those smaller than 100 ha, those 
between 100-500 ha, and those larger than 500 ha. 
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Figure 19. Irrigated areas in Mali. The size of areas has been exaggerated for easier visibility. A 

distinction is made between large, medium, and small-scale areas. 

 
 
The full map of irrigated areas in Chad is shown below. 
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Figure 20. Green: Irrigated areas in Chad. The map background has been removed to more clearly 

show the irrigated areas.  

 
In the map below we have enlarged the areas to improve the visibility. It should be kept in 
mind that this map serves to indicated the locations of the irrigated areas, but does not reflect 
the actual surface areas. In addition, the irrigated areas are divided into three categories: those 
smaller than 100 ha, those between 100-500 ha, and those larger than 500 ha. 
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Figure 21. Irrigated areas in Chad. The size of areas has been exaggerated for easier visibility,which 

means that the apparent surface area on this map does NOT correspond to real surface area. A 
distinction is made between large, medium, and small scale areas. 

 
As reference, below we reproduce the recent Global Cropland map, created as part of the 
Global Cropland Project (GFSAD30)11 (Xiong, 2017), which estimates the cropland extent in 
Africa on 30m resolution in the year 2015. The maps for cropland extent for Mali and Chad 
are shown below. 
 

 
 
11 Source: GFSAD30, croplands.org 

https://croplands.org/
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Figure 22. Green: Cropland extent in Mali (GFSAD30, Xiong 2017) 

 

 
Figure 23. Green: Cropland extent in Chad (GFSAD30, Xiong 2017) 
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3.3. QUANTITATIVE DESCRIPTION OF THE CURRENTLY IRRIGATED AREAS IN 

THE DRY SEASON 

To determine the total area classified as irrigated in the dry season, we used the zonal statistics 
tool in QGIS. This tool counts the number of pixels with a given classification in a GeoTiff 
image. After this, the total area can be computed from the area of a single pixel, which is 
obtained from the image resolution. For the zones, we use a GADM administrative area layer12. 
In the tables below, the results of this process are shown. The table also includes the cropland 
extent as estimated by GFSAD30, and the percentage of irrigated land in the dry season as a 
fraction of the cropland. 
 
Mali 

Table 23. Area classifed as irrigated using the machine learning process, in Mali. 

Region 

Total area 

103 ha 

Cropland 

extent 

(GFSAD30)  

103 ha 

Irrigated 

area 

103 ha 

Irrigated area 

as percentage 

of cropland 

area 

Bamako 25 3.79 0.09 2.4 % 

Gao 17,057 66.67 5.42 8.1 % 

Kayes 11,974 1,299.65 21.73 1.7 % 

Kidal 15,145 0.00 0.01 - 

Koulikoro 9,012 2,578.36 18.55 0.7 % 

Mopti 7,902 1,710.41 247.58 14.5 % 

Ségou 6,482 2,715.07 169.82 6.3 % 

Sikasso 7,028 2,273.58 32.51 1.4 % 

Timbuktu 49,611 63.69 69.93 109.8 % 

Total 124,236* 10,711.22 565.65 5.3 % 
* Small deviations with respect to official numbers may be caused by geographical projection errors. They do not 
effect the results in a meaningful way. 

 
Note: The numbers for Bamako might seem low. This is caused by the fact that the ‘Bamako’ 
entry refers only to the administrative area of Bamako itself, which is quite small (around 10 x 
10 km). The irrigated areas in the area ‘around Bamako’ are therefore included in the entries 
for the surrounding regions in the table. 
 
Large scale versus medium scale areas 

Using the size patches of contiguous pixels, the sizes of irrigated areas was determined. The 
numbers are listed in the table below. 
 

Table 24. Size breakdown of irrigated areas in Mali. 

Size of irrigated patch Area (kha) 

Smaller than 100 ha 144.3 

Between 100 – 500 ha 82.6 

 
 
12 GADM global administrative area GIS layers, gadm.org. 

https://gadm.org/
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Larger than 500 ha 338.7 

Total 565.6 

 
A break down per region is given in the table below. 

Table 25. Regional breakdown of sizes of irrigated areas in Mali. 

Name 

irrigated areas 

< 100 ha 

 

103 ha 

Irrigated areas 

between 100 – 

500 ha 

103 ha 

Irrigated areas 

> 500 ha 

 

103 ha 

Total 

 

 

103 ha 

Bamako 0.1 0.0 0.0 0.1 

Gao 3.6 1.7 0.0 5.2 

Kayes 14.1 3.3 4.7 22.1 

Kidal 0.0 0.0 0.0 0.0 

Koulikoro 9.9 4.0 5.2 19.1 

Mopti 53.4 34.8 160.8 249.0 

Ségou 18.7 13.8 136.8 169.2 

Sikasso 17.3 7.2 7.6 32.1 

Timbuktu 23.9 16.3 28.5 68.7 

Total 140.9 81.1 343.6 565.6 

 
Note that the totals differ marginally from the totals in the previous table. This is caused by 
the process to determine the sizes of the areas from contiguous areas of pixels. If such a patch 
straddles two different regions, it is counted twice. A correction factor was used to bring the 
country total in line with the result in the tables above. This table should therefore be used for 
qualitative assessments only. 
 
Chad  

Table 26. Area classifed as irrigated using the machine learning process, in Chad. 

Region 
Total area 

Cropland 

extent 

(GFSAD30) 
Irrigated area 

Irrigated area 

as percentage 

of cropland 

area 

103 ha 103 ha 103 ha  

Barh el Ghazel 5,631 0.12 0.10 85.21 % 

Batha 9,041 249.61 9.19 3.68 % 

Borkou 25,623 0.00 0.00 - 

Chari-Baguirmi 4,603 318.40 2.75 0.86 % 

Ennedi Est 7,737 0.00 0.00 - 

Ennedi Ouest 11,105 0.00 0.06 - 

Guéra 6,104 38.82 1.18 3.04 % 

Hadjer-Lamis 3,044 239.81 6.83 2.85 % 

Kanem 6,767 0.85 0.22 25.85 % 

Lac 1,984 3.92 11.51 293.92 % 

Logone Occidental 881 663.31 0.29 0.04 % 

Logone Oriental 2,372 808.65 0.48 0.06 % 

Mandoul 1,744 581.27 0.33 0.06 % 
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Mayo-Kebbi Est 1,805 406.51 3.70 0.91 % 

Mayo-Kebbi Ouest 1,254 398.50 0.26 0.07 % 

Moyen-Chari 4,147 386.62 6.25 1.62 % 

Ouaddaï 2,975 291.66 18.27 6.26 % 

Salamat 6,796 67.78 15.54 22.93 % 

Sila 3,570 329.24 18.26 5.55 % 

Tandjilé 1,753 587.65 0.61 0.10 % 

Tibesti 12,608 0.00 0.00 - 

Ville de N'Djamena 40 2.07 1.41 68.22 % 

Wadi Fira 5,412 2.28 7.47 327.47 % 

Total 126,996* 5377.05 104.72 1.95 % 
* Small deviations with respect to official numbers may be caused by geographical projection errors. They do not 
effect the results in a meaningful way. 

 
Large scale versus medium scale areas 

Using the size of patches of contiguous pixels, the sizes of irrigated areas was determined. 
The numbers are listed in the table below. 
 

Table 27. Size breakdown of irrigated areas in Chad. 

Size Area (kha) 

Smaller than 100 ha 50.6 
Between 100 – 500 ha 20.2 
Larger than 500 ha 33.9 

Total 104.7 

 
 
A break down per region is given in the table below. 
 

Table 28. Regional breakdown of sizes of irrigated areas in Chad. 

Name 

irrigated 

areas 

< 100 ha 

 

103 ha 

Irrigated areas 

between 100 – 

500 ha 

103 ha 

Irrigated areas 

> 500 ha 

 

103 ha 

Total 

 

 

103 ha 

Barh el Ghazel 0.10 0.00 0.00 0.10 

Batha 6.12 1.50 1.25 8.87 

Borkou 0.00 0.00 0.00 0.00 

Chari-Baguirmi 1.50 0.55 0.58 2.63 

Ennedi Est 0.00 0.00 0.00 0.00 

Ennedi Ouest 0.06 0.00 0.00 0.06 

Guéra 1.17 0.00 0.00 1.17 

Hadjer-Lamis 4.27 1.92 0.50 6.69 

Kanem 0.21 0.00 0.00 0.21 

Lac 3.36 4.16 2.91 10.43 

Logone Occidental 0.16 0.13 0.00 0.29 

Logone Oriental 0.45 0.00 0.00 0.45 

Mandoul 0.32 0.00 0.00 0.32 

Mayo-Kebbi Est 2.11 0.84 0.64 3.59 
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Mayo-Kebbi Ouest 0.26 0.00 0.00 0.26 

Moyen-Chari 1.64 0.54 3.58 5.77 

Ouaddaï 11.84 3.85 2.01 17.70 

Salamat 4.01 1.84 13.10 18.94 

Sila 3.82 2.78 11.53 18.13 

Tandjilé 0.59 0.00 0.00 0.59 

Tibesti 0.00 0.00 0.00 0.00 

Ville de N'Djamena 0.64 0.11 0.60 1.35 

Wadi Fira 5.41 1.25 0.51 7.17 

Total 48.1 19.5 37.2 104.7 

 
Note that the totals differ marginally from the totals in the previous table. This is caused by 
the process to determine the sizes of the areas from contiguous areas of pixels. If such a patch 
straddles two different regions, it is counted twice. A correction factor was used to bring the 
country total in line with the result in the tables above. This table should therefore be used for 
qualitative assessments only. 
 
The totals are further discussed in Chapter 6. 
 
One issue that is apparent from the table is that in some regions the percentage of irrigated 
area is more than 100% of area identified as cropland in the GFSAD30 project. After 
inspection, it became clear that in these cases the GFSAD30 data does not correctly classify 
areas as cropland. An example of that, in the case of the Lac region, is shown below.  
 
 

   
Figure 24. Left: Area identified as irrigated in present study. Right: in red the area identified as 
cropland by GFSAD30. Clearly, GFSAD30 does not accurately capture the cropland area here. 

3.4. WEB MAP 

A static web map was created from the classified image and from the image of suitable areas. 
To do this, the classified image that was the result of the analysis was made available on the 
web in a form that can be accessed online (see link below), and can also be accessed as a data 
layer in common Geographical Information Software (GIS), such as ArcGIS or QGIS. In this 
way, the data can be easily combined with other data layers. The web map is available here: 
 

Link to web map of Mali and Chad irrigated areas 

https://practica-maps.s3-eu-west-1.amazonaws.com/index.html?id=1
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Figure 25. The web map, showing actual irrigated area near Bamako. 

 
The links to the individual layers are listed in the table below. These can be used to add the 
layers in GIS packages such as ArcGIS or QGIS. The URLs all start with “https://practica-
maps.s3-eu-west-1.amazonaws.com/”. 
 

Table 29. URL addresses of GIS layers created in this study. 

Layer URL 

Mali – actual irrigated area mali/actual/{z}/{x}/{y}.png 
Mali – suitable areas – surface water mali/scenario1/{z}/{x}/{y}.png 
Mali – suitable areas – groundwater < 7m + surface 
water 

mali/scenario2/{z}/{x}/{y}.png 

Mali – suitable areas – groundwater < 23m + 
surface water 

mali/scenario3/{z}/{x}/{y}.png 

Chad – actual irrigated area chad/actual/{z}/{x}/{y}.png 
Chad – suitable areas chad/scenario1/{z}/{x}/{y}.png 
Chad – suitable areas – groundwater  < 7m + 
surface water 

chad/scenario2/{z}/{x}/{y}.png 

Chad – suitable areas – groundwater  < 23m + 
surface water 

chad/scenario3/{z}/{x}/{y}.png 

 
So, as an example, the full link to the Mali actual irrigated is: 
https://practica-maps.s3-eu-west-1.amazonaws.com/mali/actual/{z}/{x}/{y}.png. 
 

 

  

https://practica-maps.s3-eu-west-1.amazonaws.com/mali/scenario1/%7bz%7d/%7bx%7d/%7by%7d.png
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4. AREAS SUITABLE FOR IRRIGATION – DATA AND METHODOLOGY 

4.1. CHOICE OF METHODOLOGY 

Whether a certain area is suitable for FLID-type irrigation depends on many factors. First of 
all, there is the base determinant of water availability, both in terms of nearness to surface water 
and groundwater availability. Secondly, data layers on slope, current land cover, national parks, 
and nearness to cities are readily available and can be used to restrict suitable areas. Thirdly, 
there are a large number of additional factors that can constrain suitability, for which it is harder 
to obtain data, such as local political situation, safety, land ownership, flooding potential, 
detailed topography, local soil conditions, pollution, salinity, etc. 
 
To strike a balance in the choice of layers to use, we follow a recent paper by IWMI (Schmitter, 
2018), that estimates the potential for solar irrigation in Ethiopia using a multi-criteria model. 
Their methodology includes nearness to surface water, groundwater depth and aquifer 
properties, slope, nearness to cities, land cover, national parks, and solar irradiation as input 
parameters. From these layers, suitability is classified from not suitable to highly suitable using 
a weighted scoring mechanism. Although the IWMI paper is focused on solar pumps, their 
methodology can be easily adapted to irrigation in general by leaving out solar irradiation as an 
input parameter, which we have done in this report. The detailed layers we use are described in 
the next section. 
 
It is important to stress that this type of analysis only identifies the areas suitable for irrigation 
from a narrow list of constraints and parameters. The local factors mentioned above will further 
restrict the suitable areas. Therefore, a local assessment will always be needed when specific 
sites are chosen, in which the full complexity of determining irrigation potential can be 
determined.  
 
A further limitation of this type of analysis is that it identifies areas suitable for irrigation, but 
not the total potential of sustainable growth for irrigation. For that, it is necessary to do a full 
analysis of the hydrological situation, such as water balance and possible groundwater 
depletion. This is beyond the scope of this analysis, but has been done by a number of authors, 
which are listed in chapter 6.3. Therefore, the results for the suitable areas in this report should 
not be confused with the total potential sustainable increase.  
 
Both of these issues need a lot more analysis and modelling to arrive at results that can be 
considered valid in a given locality. Therefore, the current study should be used as an indication 
of which areas might be suitable for further detailed study.  
 

4.2 DATA SOURCES 

The analysis relies on a number of GIS layers to compute the constraints and scores: slope, 
accessibility to cities, protected areas and national parks, rivers and water bodies, land cover, 
water occurrence, groundwater depth, aquifer productivity, and aquifer storage. In the table 
below, all the layers used for the constraints and the scores are listed together with their source. 
 

Table 30. Data sources used for multi-criteria irrigation suitability model. 

Layer 

name 

Source Spatial 

resolution 

URL 

Slope NASA/C
GIAR 

90m https://developers.google.com/earth-
engine/datasets/catalog/CGIAR_SRTM90_V4 

https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4
https://developers.google.com/earth-engine/datasets/catalog/CGIAR_SRTM90_V4
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Accessibility 
to cities 

Univ. of 
Oxford 

1000m https://developers.google.com/earth-
engine/datasets/catalog/Oxford_MAP_accessibility_to_cities_2
015_v1_0 

Protected 
areas 

UNEP-
WCMC 

100m https://developers.google.com/earth-
engine/datasets/catalog/WCMC_WDPA_current_polygons 

Rivers WWF 50m https://www.hydrosheds.org/page/hydrorivers 
Water bodies WWF 50m https://www.hydrosheds.org/pages/hydrolakes 
Landcover Copernic

us 
100m https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_Landcover_100m_Prob
a-V_Global 
 

Water 
occurrence 

EC JRC / 
Google 

100m https://developers.google.com/earth-
engine/datasets/catalog/JRC_GSW1_2_GlobalSurfaceWater 

Groundwater 
depth 

BGS 5000m https://www.bgs.ac.uk/research/groundwater/international/africa
nGroundwater/mapsDownload.html 

Aquifer 
productivity 

BGS 5000m https://www.bgs.ac.uk/research/groundwater/international/africa
nGroundwater/mapsDownload.html 

Aquifer 
storage 

BGS 5000m https://www.bgs.ac.uk/research/groundwater/international/ 
africanGroundwater/mapsDownload.html 

 
Note that the groundwater maps have a low resolution of 5km. This is a severe limitation, and 
currently no better-quality maps are available for this. We discuss the effects of this in more 
detail in section 6.6. Our main conclusion there is that the low-resolution maps will mostly 
affect the accuracy on the small local level, but should not affect the outcome too much on a 
regional level. 
 
Aquifer productivity and storage are included as layers in addition to water depth, as they both 
can constrain the suitability of a given location. Aquifer productivity refers to the potential of 
an aquifer to sustain various levels of groundwater flow and/or abstraction from a borehole. For 
example: a very clayey sand layer can have a very low productivity because the water does not 
flow through it easily. In that case, even if the water is not deep, the area is unsuitable for 
groundwater irrigation. 
 
Secondly, aquifer storage refers to the amount of water that is stored in an aquifer. It depends 
on the aquifer thickness and on the porosity of the material. If the storage is too low, sustained 
abstraction may not be possible, and therefore the site is not suitable for groundwater irrigation. 
 

ACCESSIBILITY TO CITIES LAYER 

Created for the Malaria Atlas Project by Oxford University, Google, the University of 
Twente, and the EU Joint Research Center, this layer estimates the land-based travel time to 
the nearest densely populated area, in 2015. Densely populated areas are defined as areas with 
1,500 or more inhabitants per square kilometre, or a majority of built-up land cover types 
coincident with a population centre of at least 50,000 inhabitants. It is based on underlying 
data sets including the road network, type of road, railways, rivers, lakes, oceans, slope, 
elevation, landcover types, and national borders.  
 
For each of these datasets, a speed of travel was estimated. The datasets were then combined 
to form a ‘friction surface’, where each pixel was assigned a value for the estimated travel 
time to cross that pixel. The travel times where then generated from this friction surface. 
Details are described in a 2018 Nature paper (Weiss, 2018). 
 

https://developers.google.com/earth-engine/datasets/catalog/Oxford_MAP_accessibility_to_cities_2015_v1_0
https://developers.google.com/earth-engine/datasets/catalog/Oxford_MAP_accessibility_to_cities_2015_v1_0
https://developers.google.com/earth-engine/datasets/catalog/Oxford_MAP_accessibility_to_cities_2015_v1_0
https://developers.google.com/earth-engine/datasets/catalog/WCMC_WDPA_current_polygons
https://developers.google.com/earth-engine/datasets/catalog/WCMC_WDPA_current_polygons
https://www.hydrosheds.org/page/hydrorivers
https://www.hydrosheds.org/pages/hydrolakes
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V_Global
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V_Global
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V_Global
https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_GlobalSurfaceWater
https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_GlobalSurfaceWater
https://www.bgs.ac.uk/research/groundwater/international/africanGroundwater/mapsDownload.html
https://www.bgs.ac.uk/research/groundwater/international/africanGroundwater/mapsDownload.html
https://www.bgs.ac.uk/research/groundwater/international/africanGroundwater/mapsDownload.html
https://www.bgs.ac.uk/research/groundwater/international/africanGroundwater/mapsDownload.html
https://www.bgs.ac.uk/research/groundwater/international/%20africanGroundwater/mapsDownload.html
https://www.bgs.ac.uk/research/groundwater/international/%20africanGroundwater/mapsDownload.html
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4.3 CONSTRAINTS 

Before computing suitability scores, the area considered is limited by applying a number of 
constraints, based on slope, protected areas and national parks, water bodies and rivers, and 
land cover. The table below lists the layers and provides more detail on the exact constraints 
used. 
 

Table 31. Layers used as constraints. 

Layer name Constraint 
Slope Land with a slope larger than 8% is excluded. 
Protected areas Protected areas are excluded 
Water bodies and rivers Water bodies and rivers are excluded (only the actual water bodies 

themselves, not the shore) 
Land cover Areas that are not either shrubs, herbaceous vegetation, or 

cultivated/managed vegetation (agriculture) are excluded. 

 
The accessibility to cities layer was not used as a constraint, as even when a region might be 
far away from large cities, irrigation on a smaller scale might still be practiced successfully 
for the local market. Therefore, it is kept as a weighing layer, but not used as an absolute 
constraint. 
 

4.4 SCORING 

Secondly, for the areas remaining, a score was computed. The first step is to assign scores to 
the individual layers. The next step then is to combine all the scores into a single score using a 
weighted average. 
 

Table 32. Scoring of irrigation suitability for the different layers used. 

  Score 
  Very highly 

suitable 
Highly 
suitable 

Moderately 
suitable 

Less suitable Not suitable 

  5 4 3 2 1 

L
ay

er
 

Slope 0-2% 2-4% 4-6% - - 
Distance to 
water 

<50m 50-100m 100-200m 200-300m >300m 

Groundwater 
depth 

<7m 7-25m - - - 

Aquifer 
productivity 

>0.5 0.5-0.1 - - - 

Aquifer storage 25k-50k 10k-25k 1k-10k - - 
Accessibility to 
cities 

<120 minutes 120-240 min 240-480 min 480-720 min >720 min 

 
As water availability is of prime importance, we created three different scenarios for computing 
the final score. The first scenario only considers surface water as a source. We exclude streams 
and small rivers with an average flow of less than 0.1 m3 a second, as these have a large chance 
of running dry in the dry season. It should be noted that even though this boundary is somewhat 
arbitrary, many small streams and rivers have high water content in the surrounding soil, such 
as in the case of sand rivers. Areas next to these streams often lend themselves for small scale 
irrigation using small, manually drilled irrigation wells. 
 
The second scenario considers both surface water and groundwater up to a depth of 7 meters. 
The third scenario considers both surface water, and groundwater up to a depth of 23 meters. 
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The depths of 7 and 23 meters are chosen because correspond to the limits in the source GIS 
layer. 
 
This is summarized in the table below. 

Table 33. Three different irrigation suitability scenarios. 

Scenario Scoring 
1 – surface water As in table above 
2 – surface water + 
groundwater < 7m 

Groundwater < 7m – score 5 
Groundwater > 7m – score 0 

3 – surface water + 
groundwater < 23m 

Groundwater < 7m – score 5 
Groundwater >7m and < 23m – score 4 

 
The reasoning behind considering the combined layers is that they overlap in practice. Near a 
river, for example, the area suitable for surface water irrigation is very likely to also support 
groundwater use. In addition, when both surface water and groundwater are available, it will be 
almost always be more practical to use the surface water for irrigation. Because of this, there is 
little benefit in treating the groundwater layer separately. 
 
To keep it simple, we combine the various scores that are related to water into a single water 

score. The process for doing so is depicted in the image below. 
 

 
 
The surface water score is used directly for scenario 1, in which groundwater is not considered. 
The three groundwater scores (depth, productivity and storage) are combined to form the final 
water score using a weighted average, in which the groundwater depth is given twice the 
weights of aquifer productivity and aquifer storage scores, which is in line with the weights 
used in the IWMI study (Schmitter, 2018). Finally, the maximum is taken of the surface water 
score and the combined groundwater score, which leads to the final water score for scenarios 2 
and 3. The reasoning behind this is that in each location, the most available water source should 
be considered to represent the final score. 
 
After obtaining the overall water score in this way for each scenario, we now combine the water 
score with the other layers. Again, we use a weighted average, as displayed in the image below. 
 

 
 



   P a g e  | 62 

Note that we weigh the water score with a factor 0.75, while the other two layers, slope and 
accessibility to cities, are each given a score of 0.125. The reasoning here is that these factors 
have less of a direct impact on the suitability for irrigation, and therefore should receive less 
weight in the overall score. Again, these weights are in line with those used in the IWMI study. 
 
Using these rules for calculating the score, maps can be created with the scores for each of the 
scenarios. These are shown in the next chapter. 
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5. AREAS SUITABLE FOR IRRIGATION – RESULTS 
 

5.1. SUITABLE AREAS MALI 

As described in chapter 4, the suitable areas for irrigation are determined based on five different 
input layers: a constraint layer, the slope, the groundwater availability, and the nearness to 
surface water. These input layers and their classification if applicable, are shown below. 
 

 
Figure 26. Inputs for the multicriteria scoring in Mali. Left: constraints based on slope, land use, 

national parks, and water bodies. Right: slope categories. 

 
Figure 27. Inputs for the multicriteria scoring in Mali. Left: accessibility classes. Right: Groundwater 

classes. 

 
Figure 28. Inputs for the multicriteria scoring in Mali. Surface water classes. 
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There are a few observations we can make. First of all, in the constraint layer, we can see that 
the main restrictions are the national parks. Secondly, the graininess of the suitable layer is 
caused by the fact that we only select land that is currently classified as shrubs, herbaceous 
vegetation, or cultivated/managed vegetation. 
 
Secondly, in the slope image some diagonal bands are visible, which are probably an artefact 
caused by the data NASA used to calculate the elevation model. This does not concern us, as 
the slope classification is almost always either highly suitable or very highly suitable, and so 
should not have a large effect on the end result. 
 
In the accessibility class, we clearly see the cities, and the areas around them which can be 
reached within a reasonable time. Finally, for the groundwater layer we see that it is very 
blocky, which is caused by the low resolution of the data available (5000 meters).  
 

When we combine these layers as described in chapter 4, we obtain the classifications for the 
scenario with surface water only, and the scenario with groundwater and surface water. These 
are shown below. As background, an OpenStreetMap layer is shown. 
 

 
Figure 29. Suitable areas for irrigation in Mali. Scenario 1: only surface water is considered 
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Figure 30. Suitable areas for irrigation in Mali. Scenario 2: both groundwater up to 7m and surface 

water are considered. 
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Figure 31. Suitable areas for irrigation in Mali. Scenario 3: both groundwater up to 25m and surface 
water are considered. 

 

5.2. SUITABLE AREAS CHAD 

 
Figure 32. Inputs for the multicriteria scoring in Chad. Left: constraints based on slope, land use, 

national parks, and water bodies. Right: slope categories. 

 

 
Figure 33. Inputs for the multicriteria scoring in Chad. Left: accessibility classes. Right: Groundwater 

classes. 
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Figure 34. Inputs for the multicriteria scoring in Chad. Surface water classes. 

 

 

 
Figure 35. Suitable areas for irrigation in Chad. Scenario 1: only surface water is considered. 
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Figure 36. Suitable areas for irrigation in Chad. Scenario 2: both groundwater < 7m and surface water 

are considered. 
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Figure 37. Suitable areas for irrigation in Chad. Scenario 3: both groundwater <25m and surface water 

are considered. 

 

 

5.3. QUANTITATIVE DESCRIPTION OF THE AREAS SUITABLE FOR IRRIGATION 

In the tables below, we quantify the suitable areas for scenarios 1, 2 and 3. 
 
Mali 

Table 34. Regional breakdown of areas suitable for irrigation in Mali, using three scenarios. 

Region 

Total area 

103 ha Scenario 1 – 

surface 

water 

103 ha 

 

 

 

% 

Scenario 2 – 

groundwater 

< 7m + 

surface 

water 

103 ha 

 

 

 

% 

Scenario 3 – 

groundwater 

< 23m + 

surface 

water 

103 ha 

 

 

 

% 

Bamako 25 0.14 0.56 0.18 0.72 0.18 0.72 

Gao 17,057 224.94 1.32 260.46 1.53 267.95 1.57 

Kayes 11,974 317.70 2.65 1,166.84 9.74 1,796.54 15.00 

Kidal 15,145 81.47 0.54 80.15 0.53 81.47 0.54 
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Koulikoro 9,012 336.63 3.74 857.16 9.51 1,156.11 12.83 

Mopti 7,902 361.33 4.57 1,131.09 14.31 1,153.15 14.59 

Ségou 6,482 290.03 4.47 570.63 8.80 579.49 8.94 

Sikasso 7,028 331.44 4.72 599.00 8.52 1,153.74 16.42 

Timbuktu 49,611 212.45 0.43 498.37 1.00 503.38 1.01 

Total 124,236* 2,156.12 1.74 5,163.88 4.16 6,692.02 5.39 
* Small deviations with respect to official numbers may be caused by geographical projection errors. They do not 
effect the results in a meaningful way. 

 
Chad  

Table 35. Regional breakdown of areas suitable for irrigation in Chad, using three scenarios. 

Region 
Total area 

Scenario 

1 – 

surface 

water 

103 ha 

 

 

 

% 

Scenario 

2 – 

groundw

ater < 7m 

+ surface 

water 

103 ha 

 

 

 

% 

Scenario 3 – 

groundwater 

< 23m + 

surface 

water 

103 ha 

 

 

 

% 

103 ha 103 ha    103 ha  

Barh el Ghazel 5,631 0.29 0.01 15.33 0.27 35.94 0.64 

Batha 9,041 151.86 1.68 151.86 1.68 153.33 1.70 

Borkou 25,623 0.71 0.00 0.71 0.00 0.71 0.00 

Chari-Baguirmi 4,603 183.76 3.99 581.33 12.63 582.12 12.65 

Ennedi Est 7,737 10.69 0.14 10.82 0.14 10.82 0.14 

Ennedi Ouest 11,105 18.92 0.17 18.92 0.17 18.92 0.17 

Guéra 6,104 120.02 1.97 121.83 2.00 283.25 4.64 

Hadjer-Lamis 3,044 95.10 3.12 149.25 4.90 160.91 5.29 

Kanem 6,767 1.65 0.02 13.54 0.20 13.54 0.20 

Lac 1,984 369.69 18.63 372.12 18.76 372.12 18.76 

Logone 

Occidental 
881 70.90 8.05 279.05 31.67 749.44 85.07 

Logone Oriental 2,372 122.31 5.16 306.81 12.93 878.88 37.05 

Mandoul 1,744 72.95 4.18 148.83 8.53 244.47 14.02 

Mayo-Kebbi Est 1,805 139.37 7.72 312.89 17.33 337.69 18.71 

Mayo-Kebbi 

Ouest 
1,254 62.98 5.02 119.82 9.56 348.82 27.82 

Moyen-Chari 4,147 78.13 1.88 287.23 6.93 402.66 9.71 

Ouaddaï 2,975 88.20 2.96 88.20 2.96 139.90 4.70 

Salamat 6,796 97.16 1.43 114.61 1.69 158.57 2.33 

Sila 3,570 72.45 2.03 72.76 2.04 300.35 8.41 

Tandjilé 1,753 144.26 8.23 329.69 18.81 611.97 34.91 

Tibesti 12,608 0.03 0.00 0.03 0.00 0.03 0.00 

Ville de 

N'Djamena 
40 0.99 2.48 8.05 20.13 8.05 20.13 

Wadi Fira 5,412 62.18 1.15 62.18 1.15 81.03 1.50 
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Total 126,996* 1,979.65 1.56 3,586.47 2.82 5,893.51 4.64 
* Small deviations with respect to official numbers may be caused by geographical projection errors. They do not 
effect the results in a meaningful way. 

 
The areas suitable for irrigation in the table above should not be understood as areas that can 
be completely realized. They should be understood as areas where irrigation expansion could 
be feasible. To determine the scope for actual large-scale expansion of irrigation in a given area, 
an analysis should be made on the catchment level, to determine the total amount of water that 
can be safely used for increased irrigation without negative impact on groundwater levels or 
river flow downstream. In addition, effects such as possible local market saturation should be 
investigated. 
 

5.4. WEB MAP 

A static web map was created from the classified image and from the image of suitable areas. 
To do this, the GeoTiff image that was the result of the analysis was turned into a slippy web 
map, which is a GIS standard that can be used by GIS packages such as ArcGIS and QGIS 
and can be displayed on a web map. The links to the individual layers are listed in chapter 3. 
 
The web map is available here: 
 

Link to web map of Mali and Chad irrigated areas 

 

 
Figure 38. Web map, showing areas suitable for irrigation. The blocky structures are caused by the 

low resolution of the groundwater depth map. 

 

 

 

https://practica-maps.s3-eu-west-1.amazonaws.com/index.html?id=1
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5.5. IDENTIFYING AREAS WITH HIGH POTENTIAL FOR IRRIGATION EXPANSION 

In this section, we combine the actually irrigated areas and areas potentially suitable for 
irrigation as determined in previous chapters, and identify zones of high potential. This is 
based on the notion that farmer-led irrigation generally develops in areas with existing 
irrigation activity, because of the available markets, inputs, knowledge and experience. An 
example to this is Beekman et al. (2014) showing how irrigation development takes place 
through expansion zones with existing farmer-led irrigation activity. 
 
In the maps below, we superimpose the result of the middle scenario (surface water + 
groundwater < 7m), with the areas that are actually irrigated as determined in chapter 3 and 4. 
The rationale for using the middle scenario is that groundwater at a depth higher than 7 meter 
can be readily abstracted using affordable and available technologies. These areas therefore 
are the most suitable when expansion of irrigation is considered. 
 
For both Mali and Chad, an important conclusion is that suitable areas for irrigation are either 
directly near surface water, or areas near rivers where the water table is expected to be above 
7 meters. Existing small-scale irrigation already takes place along rivers, as is clear from the 
maps above. By using technologies such as low-cost manually drilled boreholes, the area near 
rivers where irrigation can be used could be expanded. 

MALI 
In the table below, the potentially suitable area for irrigation as determined in chapter 4 and 5 
is compared with the actually irrigated area. Here we use scenario 2, which is the middle 
scenario that incorporates surface water and groundwater up to a depth of 7 meters. 
 

Table 36. Comparison of potentially suitable areas (scenario 2) to actually irrigated areas in Mali. 

Region 

Total 

area 

103 ha 

Cropland 

extent 

(GFSAD30)  

103 ha 

Potentially 

suitable area 

(scenario 2) 

103 ha 

Actually 

irrigated area 

103 ha 

Irrigated area 

as percentage 

potentially 

suitable area 

Bamako 25 3.79 0.18 0.09 50.0% 

Gao 17,057 66.67 260.46 5.42 2.1% 

Kayes 11,974 1,299.65 1,166.84 21.73 1.9% 

Kidal 15,145 0.00 80.15 0.01 0.0% 

Koulikoro 9,012 2,578.36 857.16 18.55 2.2% 

Mopti 7,902 1,710.41 1,131.09 247.58 21.9% 

Ségou 6,482 2,715.07 570.63 169.82 29.8% 

Sikasso 7,028 2,273.58 599.00 32.51 5.4% 

Timbuktu 49,611 63.69 498.37 69.93 14.0% 

Total 124,236* 10,711.22 5,163.88 565.65 11.0% 
* Small deviations with respect to official numbers may be caused by geographical projection errors. They do not 
effect the results in a meaningful way. 

 
As stated in section 4.1, the ‘potentially suitable area’ can significantly overestimate the area 
that could actually be sustainably irrigated. This might, for example, be the case in Kidal, 
where areas around smaller rivers are identified as potential for irrigation, but it is very 
unlikely that the total amount of water available could support substantial irrigation 
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expansion. For a complete assessment of realizable irrigation potential, a full hydrological 
assessment is needed, with a calculation of water balance. 
 
In the map of Mali below, the areas suitable for irrigation for the scenario surface water + 
groundwater < 7m are combined with the actually irrigated areas. 
 
 

 
Figure 39. Irrigated areas in Mali (green). Yellow, orange, red: moderately, highly, and very highly 

suitable areas for irrigation. The irrigated areas have been enlarged for better visibility, which means 
that the apparent surface area on this map does NOT correspond to real surface area. 

 

REGIONAL ZONES OF HIGH POTENTIAL 

The regions identified below are already close to areas where irrigation is being practiced, and 
show potential in terms of suitability for surface water or shallow groundwater. Note that this 
analysis does not take into account hydrological boundaries on sustainable abstraction. 
 
In the Kayes region, irrigation is practiced mainly in the North-East corner, along the Baoulé 
river, to the West of Kayes near Segala, in the North near Yaguine, and along the Eastern 
border river with Mauritania. These areas also show potential for shallow-groundwater use. 
 
In Koulikoro region and Bamako region, the main area of interest is the region to the East of 
Bamako, around the Niger river and using shallow groundwater. To the South of Bamako, the 
lower parts of the Niger river have potential, for example the area around Sankarani River. To 
the West of Bamako the border area between the Koulikoro region and the Kayes region 
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along the Baoule river has potential for shallow groundwater. In the South-West part of 
Koulikoro, the area around the Bani river. 
 
In Sikasso region, interesting areas include the area near the Sankarani River near 
Gueleninkoro and Badiogo in the West, and the area to the South of Loulouni and North of 
Sikasso in the East. 
 
In Ségou region, areas of interest are the Office du Niger, the area along the Niger river to the 
West of Ségou itself, and the extensive areas along the Niger river near Dioro and Kolongo-
Tomo. In the South, the region along the Bani river. 
  
In Mopti region, the whole area around the inner Niger delta is of interest, both in terms of 
surface water and for shallow groundwater. To the South, the area between Mougna and 
Kandara. Towards the North,  the branches of the Niger are interesting because of the 
proximity to surface water, and above Gathi-Loumo because of shallow groundwater. 
 
In Timbuktu region, recession agriculture is possible (and practiced) in the many lakes, for 
example near Dianké, Soumpi and Lake Oro and Fati. Along the many branches of river 
Niger, including near Timbuktu itself, irrigation is practiced extensively, and expansion could 
be possible by using shallow groundwater. 
 
Finally, in Gao region, irrigation on a small scale is possible near the Niger river, for example 
near Ouatagouna. 
 
The above regions are only a rough indication, and the maps can be further explored in detail 
on the online map, which allows zooming in to a region of interest. 
 

CHAD 
In the table below, the potentially suitable area for irrigation as determined in chapter 4 and 5 
is compared with the actually irrigated area. Here we use scenario 2, which is the middle 
scenario that incorporates surface water and groundwater up to a depth of 7 meters. 
 

Table 37. Comparison of potentially suitable areas (scenario 2) to actually irrigated areas in Chad. 

Region 
Total area 

Cropland 

extent 

(GFSAD30) 

Potentially 

suitable area 

(scenario 2) 

103 ha 

Actually 

irrigated 

area 

Irrigated 

area as 

percentage 

potentially 

suitable area 

103 ha 103 ha  103 ha  

Barh el Ghazel 5,631 0.12 15.33 0.10 0.7% 

Batha 9,041 249.61 151.86 9.19 6.1% 

Borkou 25,623 0.00 0.71 0.00 0.0% 

Chari-Baguirmi 4,603 318.40 581.33 2.75 0.5% 

Ennedi Est 7,737 0.00 10.82 0.00 0.0% 

Ennedi Ouest 11,105 0.00 18.92 0.06 0.3% 

Guéra 6,104 38.82 121.83 1.18 1.0% 

Hadjer-Lamis 3,044 239.81 149.25 6.83 4.6% 

https://practica-maps.s3-eu-west-1.amazonaws.com/index.html?id=1
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Kanem 6,767 0.85 13.54 0.22 1.6% 

Lac 1,984 3.92 372.12 11.51 3.1% 

Logone 

Occidental 
881 

663.31 
279.05 

0.29 0.1% 

Logone 

Oriental 
2,372 

808.65 
306.81 

0.48 0.2% 

Mandoul 1,744 581.27 148.83 0.33 0.2% 

Mayo-Kebbi 

Est 
1,805 

406.51 
312.89 

3.70 1.2% 

Mayo-Kebbi 

Ouest 
1,254 

398.50 
119.82 

0.26 0.2% 

Moyen-Chari 4,147 386.62 287.23 6.25 2.2% 

Ouaddaï 2,975 291.66 88.20 18.27 20.7% 

Salamat 6,796 67.78 114.61 15.54 13.6% 

Sila 3,570 329.24 72.76 18.26 25.1% 

Tandjilé 1,753 587.65 329.69 0.61 0.2% 

Tibesti 12,608 0.00 0.03 0.00 0.0% 

Ville de 

N'Djamena 
40 

2.07 
8.05 

1.41 17.5% 

Wadi Fira 5,412 2.28 62.18 7.47 12.0% 

Total 126,996* 5377.05 3,586.47 104.72 2.9% 
* Small deviations with respect to official numbers may be caused by geographical projection errors. They do not 
effect the results in a meaningful way. 

 
In the map of Chad below, the areas suitable for irrigation for the scenario surface water + 
groundwater < 7m are combined with the actually irrigated areas. 
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Figure 40. Irrigated areas in Chad (green). Yellow, orange, red: moderately, highly, and very highly 
suitable areas for irrigation. The irrigated areas have been enlarged for better visibility, which means 

that the apparent surface area on this map does NOT correspond to real surface area. 

 

REGIONAL ZONES OF HIGH POTENTIAL 

The regions identified below are already close to areas where irrigation is being practiced, and 
show potential in terms of suitability for surface water or shallow groundwater. Note that this 
analysis does not take into account hydrological boundaries on sustainable abstraction. 
 
As is the case in Mali, the regions of interest for irrigation closely follow the surface water 
areas. The map below shows the drainage basin of the Chari river. 
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Figure 41. The Chari River drainage basin. Source: Wikipedia.   

 
In the East of the country irrigation takes place along the many rivers in the Ouaddai region, 
the Azoum and Salamat river, and towards the North near Wadi Fera. In the West and South, 
the map indicates scope for shallow groundwater irrigation, and expansion of surface water 
irrigation, for example near Sahr in the Moyen-Chari region.  
 
In the North, the area below Lake Chad and towards Ville de N’Djamena. Along the Logone 
and Chari river, potential for surface irrigation and shallow groundwater is high. In the South, 
the Logone river and tributary to the Chari river also form the most promising areas. 
 
These maps can be further explored on the online map, which allows zooming in to a region 
of interest. 
 

  

https://practica-maps.s3-eu-west-1.amazonaws.com/index.html?id=1
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6. DISCUSSION 
We determined irrigated areas in Mali and Chad in the period Oct 2019 – June 2020, using 
Sentinel 2 satellite data and machine learning, at a 30m resolution. The Random Forest model 
used showed a good accuracy, with the overall accuracy at 95.6% for Mali and 95.5% for Chad. 
The most important bands turned out to be the monthly averages of the EVI and NDWI indices, 
and their monthly differences.  
 
In addition, we have determined areas with a high potential suitability for new irrigation. To do 
this, we combine local properties such as nearness to surface water, groundwater depth and 
aquifer properties, protected areas and national parks, accessibility to cities, and land use. These 
properties were combined into an overall suitability score using a weighted average. We created 
three scenarios, one only considering surface water, the other two combining surface water and 
groundwater at different depths.   
 
From Chapter 3 and 5, our estimate for currently irrigated area in the dry season in Mali is 
565.6 kha, and our estimate for the areas suitable for irrigation expansion, rounded to 
significant numbers and depending on the scenario, is 2200 – 6700 kha. For Chad, our 
estimate for currently irrigated area in the dry season is 104.7 kha, and our estimate for the 
areas suitable for irrigation expansion, depending on the scenario is 2000 – 5900 kha. As 
noted before, the result for irrigated area should not directly be compared to the suitable areas 
due to the fact that the latter does not incorporate hydrological constraints. In this chapter, we 
compare our results to those of other studies. 
 

6.1 COMPARISON WITH OTHER STUDIES 

In the tables below, we bring together a number of studies on both the area under irrigation 
and estimates for either total irrigation potential or suitable areas for irrigation expansion. The 
methodologies for determining the irrigation potential are quite different and are calculated 
for different years, so the numbers should be interpreted with care. For example, some studies 
(Pavelic, Altchenko, You, Africa Dryland report) take into account the hydrological situation 
and water balance. Some, such as FAO (and this report) do not do this, which explains the 
large difference in size of numbers. 
 
For the actually irrigated areas, we only quote the AQUASTAT figures as other studies 
known to us repeat these statistics, so no new information is obtained. The year to which the 
data applies is given between brackets before the actual figures. 
 

Mali – Actually irrigated areas 
Table 38. Comparison of our results for irrigated areas with FAO statistics in Mali. 

Reference 

Equipped for 

irrigation 

(103 ha) 

Equipped – 

actually 

irrigated 

(103 ha) 

Total water 

agricultural 

water managed 

area 

(103 ha) 

Irrigated area 

in the dry 

season 

(103 ha) 

FAO AQUASTAT (2011)  371.1   (2011)  621.3  

FAO AQUASTAT  (2000)  235.8 (2000)  175.8 (2000)  386.1  

FAO Mali (2013)  380.0    

     

This report     (2019)  565.6 
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Mali – Irrigation potential / Suitable areas 
Table 39. Comparison of our results for suitable areas for irrigation in Mali with other studies. 

Reference 

Total Irrigation 

potential 

(103 ha) 

Comments 

FAO AQUASTAT (2013)  566 Surface + ground water, 
hydr. constraints 

You (2010) – IFPRI *802 Surface + ground water, 
hydr. constraints 

WB / Ward (2016) – IFPRI **652 Surface + ground water, 
hydr. constraints 

Pavelic (2013) 

***1054-1868 groundwater only, 
hydr. constraints 

Altchenko (2014) – IWMI 
331-787 groundwater only, 

hydr. constraints 
IWMI (2019) 685 - 4435 Surface + ground water, suitable areas 
   

This report 

2156 – 6692 Surface + ground water, suitable 

areas 

* You (2010, table 8) only report potential increases in irrigated area (491 kha). To calculate this 
figure, we assume You uses the AQUASTAT data in 2010 as reference. 
** Ward (2016) only reports potential increases in irrigated area (281 kha). To calculate this 
figure, we assume Ward uses the AQUASTAT data in 2016 as reference. 
*** We use the 500mm/y scenario, with 50 or 70% environmental groundwater requirement 
(Pavelic 2013, table 3) 

 

Chad – Actually irrigated areas 
Table 40. Comparison of our results for irrigated areas with FAO statistics in Chad. 

Reference 

Equipped for 

irrigation 

(103 ha) 

Equipped – 

actually 

irrigated 

(103 ha) 

Total 

agricultural 

water managed 

area 

(103 ha) 

Irrigated area in 

the dry season 

(103 ha) 

FAO AQUASTAT (2002)  30.3  (2002)  26.2 (2002)  155.3  

     

This report     (2019) 104.7 

 
Chad – Irrigation potential / Suitable areas 

Table 41. Comparison of our results for suitable areas for irrigation in Chad with other studies. 

Reference 
Total Irrigation 

potential 

(103 ha) 

Comments 

FAO AQUASTAT 
(2013)  335 

Surface + ground water, 
hydr. constraints 

You (2010) - IFRPRI *365 Surface + ground water, hydr. constraints 

WB / Ward (2016)– IFPRI **295 
Surface + ground water, 

hydr. constraints 

Altchenko (2014) – IWMI 
237-566 

groundwater only, 
hydr. constraints 

   
This report 1979 – 5893 Surface + ground water, suitable areas 
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* You (2010, table 8) only report potential increases in irrigated area (277 kha). To calculate this 
figure, we assume You uses the AQUASTAT data in 2010 as reference. 
** Ward (2016) only reports potential increases in irrigated area (265 kha). To calculate this 
figure, we assume Ward uses the AQUASTAT data in 2016 as reference. 

 

 

Areas under irrigation in the dry season 

Our estimate of areas under irrigation in the dry season for Mali is 565.6 kha, which is in line 
with the most recent estimate from AQUASTAT (621.3 kha) for the total agricultural area 
under water management, which includes flood recession cropping areas and cultivated 
wetlands and inland valley bottoms (as explained in section 2.2). Of this area, 338.7 kha is 
larger than 500 ha, 82.6 kha is between 100 – 500 ha, and 144.3 kha is smaller than 100 ha. In 
Mali, the area that is equipped for irrigation is 59.7% of the total area under water 
management according to AQUASTAT, showing that flood recession, cultivated wetlands 
and valley bottoms play an important role in the total irrigated area.  
 
Our estimate for Chad is 104.7 kha, significantly less than the recent estimate from 
AQUASTAT (155.3 kha). Of this area, 33.9 kha is larger than 500 ha, 20.2 kha is between 
100 – 500 ha, and 50.6 kha is smaller than 100 ha.  In Chad, the area that is equipped for 
irrigation is only 19.5% of the total area under water management according to AQUASTAT, 
showing that the role of flood recession, cultivated wetlands and valley bottoms, and possibly 
irrigation in the wet season, plays an even greater role in Chad. 
 
In the case of Mali, our estimate is 9% lower than the official estimates. For Chad, our 
estimate is 33% less than the official estimate. There are several possible causes for this: 
limitations of our machine learning method such as an excluding wet season irrigation, a 
possible overestimation of the official numbers, or the fact that not all areas identified as 
under water management are actually involved in irrigation in a given year. In addition, the 
numbers refer to different years.  
 
Potential areas / suitable areas 

As stated in our introduction, a distinction should be made between ‘areas suitable for 
irrigation’, which means areas where irrigation could be practiced, and ‘total irrigation 
potential’, which means the fully realizable area, given hydrological constraints. The studies 
we found that have estimates for these numbers vary considerably in their methodology — 
with some considering both ground and surface water, and others considering only 
groundwater — explaining the large variation in numbers in the tables.  
 
Depending on the scenario used, our estimate for areas suitable for irrigation expansion in 
Mali varies between 2200 – 6700 kha, which is in line with a recent study with a similar 
approach (IWMI 2019). In the case of Mali, studies that incorporate the hydrological 
constraint indicate that only about 30% of the suitable area can actually be used for irrigation 
in a sustainable way. For Chad, our estimates for suitable areas depending on the scenario 
vary between 2000 – 5900 kha. Studies that incorporate the hydrological constraint indicate 
that in Chad, only about 17% , of the suitable area can actually be used for irrigation in a 
sustainable way.  
 
This means that in both countries, the hydrological component is essential for estimates of the 
total realizable irrigation potential. The suitable areas as described in this report should 
therefore be used only to identify overall suitable regions and guide site selection. 
 



   P a g e  | 81 

Interestingly, the actual irrigated area for Mali already is close to the ranges quoted in the 
various studies. This would seem to indicate that Mali is already close to its irrigation 
potential from a hydrological limits point of view. To gain more confidence, it will be needed 
to do a more in-depth study that incorporates details of hydrological limits. For example, both 
You and Altchenko use a percentage for the groundwater requirements for environmental 
needs that spans 30%-70%, which accounts for the large spread in numbers. 
 
For Chad, there is at least a factor of 2 difference between the current irrigated area and the 
estimates for the overall irrigation potential with hydrological limits taken into account. This 
indicates that in Chad, there is still ample scope for increased irrigation. 
 

 

ADDITIONAL INFORMATION ON THE REFERENCES 

You (2010) — Estimation of the development potential of irrigation from a multi-criteria 
analysis based on agronomic, hydrological and economic criteria (surface water and 
groundwater combined). 
 
Pavelic (2013) — Estimation of the development potential of small-scale irrigation (SSI) 
from groundwater from a hydrological balance taking into account recharge, AEP and 
livestock uses, as well as environmental needs. 
 
Altchenko (2014) — Mapping of the potential for irrigation from renewable groundwater in 
Africa from a water balance taking into account recharge, water supply and livestock uses, as 
well as environmental needs. 
 
WB / Ward (2016) — IFPRI Estimation of the development potential of irrigation in the 
"Drylands" arid zone (including groundwater) from a multi-criteria analysis based on 
geographical criteria; agronomic, hydrological and hydrogeological, social, economic, and 
rural development (transport network, markets). 
 
Aquastat Mali — http://www.fao.org/aquastat/en/geospatial-information/global-maps-
irrigated-areas/irrigation-by-country/country/MLI 
 
Aquastat Chad — http://www.fao.org/aquastat/en/geospatial-information/global-maps-
irrigated-areas/irrigation-by-country/country/TCD 
 
FAO Mali — Country brief mali, http://www.fao.org/3/a-i7617e.pdf 
 

COMPARISON WITH FAO AQUASTAT STATISTICS 

In this section, we give an overview of AQUASTAT statistics for both countries, and compare 
our results against them. For easy reference, the FAO definitions of the statistics used are 
available in the Appendix. 
 
Mali AQUASTAT statistics 

FAO statistics for arable area, irrigation potential, areas equipped for irrigation, and total 
agricultural water managed area. (FAO 2016) 
 

http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/irrigation-by-country/country/MLI
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/irrigation-by-country/country/MLI
http://www.fao.org/3/a-i7617e.pdf
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Table 42. Irrigation AQUASTAT statistics for Mali. 

FAO Statistic Year 
Area 

(103 ha) 

Arable land area 2016 6,411 

Permanent crops area 2016 150 

Cultivated area (arable land + permanent crops) 2016 6,561 

Irrigation potential 2013 566 

Area equipped for full control irrigation: total  2011 167.1 
Area equipped for full control irrigation: actually 
irrigated 2011 139.9 

Area equipped for irrigation: equipped lowland areas 2011 204 

Area equipped for irrigation: spate irrigation   

Area equipped for irrigation: total 2011 371.1 

Area equipped for irrigation: actually irrigated 2000 175.8 

Flood recession cropping area non-equipped 2009 250.2 
Cultivated wetlands and inland valley bottoms non-
equipped 1994 3.8 

Total agricultural water managed area (1000 ha) 2011 621.3 

 
 

Mali area equipped for irrigation FAO statistics – sub national 

The figures refer to the year 2000. Note: the totals in the table above refer to different years. 
For example, the total area equipped for irrigation in 2000 is given as 235 kha, and in 2009 
given as 371.1. (FAO 2016) 
 
 

Table 43. Regional breakdown of FAO irrigation statistics for Mali. 

Region 

Total area equipped 

for irrigation (year: 

2000) 

(103 ha) 

Gao 14.4 
Kayes 2.4 
Kidal 0 
Koulikoro 23.5 
Mopti 50.7 
Segou 97.6 
Sikasso 11.4 

Tombouctu 35.7 

Mali total 235.8 

with groundwater 1.0 

with surface water 234.8 

Area equipped for full control 
irrigation 

97.5 

Equipped lowland areas 138.3 

 

Comparison 
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The comparison of our results to AQUASTAT statistics is hampered by the fact that the 
AQUASTAT numbers are only available for certain years. In particular, the actually irrigated 
area for Mali is only given for the year 2000. Therefore, in the table below we give two different 
figures: one including the actual irrigated area in 2000, and one using the total area equipped 
for irrigation in 2011. In both cases, we add Flood recession cropping areas and Cultivated 
wetlands and inland valley bottoms. 
 
 

Table 44. Comparison of our results to FAO statistics for Mali. 

 Total area 

(103 ha) 
Area equipped for irrigation: actually irrigated 
(2000) + Flood recession cropping area non-
equipped (2009) + Cultivated wetlands and 
inland valley bottoms non-equipped (1994) 
 

429.8 

Area equipped for irrigation: total (2011) + Flood 
recession cropping area non-equipped (2009) + 
Cultivated wetlands and inland valley bottoms 
non-equipped (1994) 
 

625.1 

Total agricultural water managed area (2011) 621.3 
This report: total area under irrigation in the 

dry season (2019) 

Size breakdown: 

<  100  ha: 144.3 kha 

100-500 ha: 82.6 kha 

>  500 ha: 338.7 kha 

565.6 

 

 
From the table, it is clear that our result is in line with AQUASTAT statistics. 
 

Chad AQUASTAT statistics 

FAO statistics for arable area, irrigation potential, areas equipped for irrigation, and total 
agricultural water managed area. (FAO 2016) 
 
 

Table 45. Irrigation AQUASTAT statistics for Chad. 

FAO Statistic Year 
Area 

(103 ha) 

Arable land area 2016 4,900 

Permanent crops area 2016 35 

Cultivated area (arable land + permanent crops) 2016 4,935 

Irrigation potential 2013 335 

Area equipped for full control irrigation: total  2002 30.27 
Area equipped for full control irrigation: actually 
irrigated 2002 26.2 

Area equipped for irrigation: equipped lowland areas   

Area equipped for irrigation: spate irrigation   

Area equipped for irrigation: total 2002 30.27 

Area equipped for irrigation: actually irrigated 2002 26.2 
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Flood recession cropping area non-equipped 2002 125 
Cultivated wetlands and inland valley bottoms non-
equipped 1988 21.4 

Total agricultural water managed area (1000 ha) 2002 155.3 

 

Chad area equipped for irrigation FAO statistics – sub national 

The figures refer to the year 2002. (FAO 2016) 
 

Table 46. Regional breakdown of FAO irrigation statistics for Chad. 

Region 

Total area equipped 

for irrigation (year: 

2002) 

(103 ha) 

Batha 0.3 
Bilthine 0 
Bourkou Ennedi Tibesti 
(BET) 2.5 
Chari-Baguirmi 2.58 
Guera 0.13 
Kanem 0.54 
Lac 9.05 
Logone-Occidental 0 
Logone-Oriental 0.25 
Mayo-Kebbi 3.66 
Moyen-Chari 3.7 
Ouaddai 5.46 
Salamat 0 

Tandjile 2.1 

Chad total 30.27 

with groundwater 6 

with surface water 24.27 

 
Comparison 
Comparison with AQUASTAT statistics: 
 

Table 47. Comparison of our results to FAO statistics for Chad. 

 Total area 

(103 ha) 
Area equipped for irrigation: actually irrigated 
(2002) + Flood recession cropping area non-
equipped (2002) + Cultivated wetlands and 
inland valley bottoms non-equipped (1988) 
 

172.6 

Area equipped for irrigation: total (2002) + Flood 
recession cropping area non-equipped (2002) + 
Cultivated wetlands and inland valley bottoms 
non-equipped (1988) 
 

176.7 

Total agricultural water managed area (2002) 155.3 
This report: total area under irrigation in the 

dry season (2019) 

104.7 
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Size breakdown: 

<  100  ha: 50.6 kha 

100-500 ha: 20.2 kha 

>  500 ha: 33.9 kha 

 
From the table, we see that our total result is significantly lower than the AQUASTAT 
statistics. The largest share to the total agricultural water managed area is the flood recession 
cropping area, with 125 kha. It therefore seems likely that it is either the case that our method 
does not accurately capture flood recession agriculture, or that the AQUASTAT numbers 
overestimate the actual flood recession area used for irrigation.  
 

6.2. LIMITATIONS OF REMOTE SENSING ANALYSIS 

During this work, we encountered a number of limitations that we estimate will affect any work 
of this type. These limitations are listed below. 
 

DISTINCTION FARMER-LED AND GOVERNMENT-LED IRRIGATION 

The machine learning algorithm we employed is pixel-based, meaning that it uses spectral 
information of each image pixel for the classification into irrigated or not-irrigated. Therefore, 
information on field size is not obtained — one of the most important indicators of whether 
irrigation is farmer-led or not. In addition, the variation in degree of clustering and nature of 
irrigation in flood recession, cultivated wetlands, and valley bottoms means that remote sensing 
data alone does not contain enough information to specifically identify farmer-led irrigation as 
a category.  
 
Therefore, other geospatial information on the location, management type and nature of 
different types of irrigation — such as large-scale irrigation schemes and flood recession areas 
— is needed. In this study, we successfully used the size of patches of contiguous pixels 
classified as irrigated to distinguish between small, medium, and large-scale irrigation. 
 

IRRIGATION DURING RAINY SEASON 

During the rainy season, data from satellites can be unavailable for months due to cloud cover. 
Therefore, it is often not possible to obtain any high-quality data during the rainy season, which 
was the reason that we did not consider this period in this study. This means that a number of 
irrigation practices that happen during the rainy season, such as supplementary irrigation, 
cannot be determined using this method. Although satellite sources were tried that are not 
sensitive to cloud cover (Sentinel-1 Synthetic Aperture Radar) it was found to not be sufficient 
to be used on its own. Therefore, irrigation can only be identified in period that stretches from 
the end of the rainy season up to the start of the next rainy season. 
 

RECEDING WATER AGRICULTURE 

In both Chad and Mali, a lot of agriculture revolves around water bodies (both rivers and lakes) 
that fill up during the rainy season, and then show receding water levels. This type of agriculture 
is hard to detect using the method applied in this report, because other vegetation growth also 
follows the receding water. In addition, it is unclear if this type of irrigation should be classified 
as ‘irrigation’.  
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LIMITATIONS IN THE AVAILABILITY OF HIGH-RESOLUTION IMAGERY 

Part of the ground truth data collection process relies on high-resolution Google Maps. 
However, in many cases this imagery can be dated. In the case of Mali, most of the imagery is 
recent, in most cases from 2019. However, in the case of Chad, a significant part of the imagery 
is older, with many images stemming from 2012. This means that in the case of Chad, the 
ground truth data might be less reliable.  
 
In the present study the reliance on high-resolution imagery was reduced by the availability of 
the EVI and NDWI maps and time series. In contrast to Google Earth imagery, the Google 
Earth Engine satellite data is always up to date and can be used, even though it has a lower 
resolution. Therefore, although the choice of training points was more difficult that in the case 
of Mali, the impact on the quality of the results is limited.  
 
It might be possible to eliminate the need for high-resolution imagery completely using this 
method, but it will bring additional risks of misinterpretation. This is especially relevant for 
areas where the distinction between natural growth and irrigation is difficult to detect, such as 
in valley bottoms. Therefore, it is advisable to create the ground truth data for a period for which 
high-resolution imagery is available, and to use that data to train the model. The same model 
can then be used to classify imagery in other years. 
 

CLIMATE REGIONS 

Both Mali and Chad cover three climate zones, and therefore have a gradual change of the 
climate across the country. This is not a good match for Random Forest machine learning, and 
it can lead to a loss of discriminatory power. The way this issue was mitigated in this study – 
by dividing the country into three zones – is not ideal, as it triples the need for ground truth 
data. 
 

6.3 LIMITATIONS OF AREAS SUITABLE FOR IRRIGATION 

RELIABILITY AND LOW RESOLUTION OF GROUNDWATER MAP 

In the analysis of areas suitable for irrigation, the weakest link is the groundwater map. It has 
a low spatial resolution (5000 meter), and is mainly based on modelling, with limited input of 
case studies and other data. The reliability of the groundwater layer will have quite a large 
effect on the estimates of the scenarios of suitable areas that include groundwater, as it is the 
main ingredient and determines 50% of the score, and also acts as a constraint layer. 
 
Of course, at present, the large majority of irrigated land is based on surface water which 
limits the importance of this issue somewhat. According to AQUASTAT, for Mali 99.5% of 
the area equipped for irrigation uses surface water, and for Chad the number is 80%. If we 
take into account flood recession and valley bottoms, the numbers are even starker skewed 
towards surface water. 
 
Details on the methodology, including a full list of data sources used, are available in two 
publications (MacDonald, 2012 and Bonsor, 2011). The authors explicitly state (p.6): “The 

maps presented here are designed to give a continent-wide view of groundwater and to 

encourage the development of more quantitative national and sub-national quantitative maps 

and assessments to support the development of groundwater-based adaptation strategies to 
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current and future climate variability.”. This indicates that the map should mainly be used to 
draw conclusions on a regional scale, and not on specific locations.  
 
The fact that the layer has a low resolution is not that important for the estimate of the 
potential areas on the regional level, as the details will even out. The resolution is only 
important when the situation is estimated at a precise location, where the low resolution can 
change the score substantially.  
 
We conclude that in the case of specific areas, such as the bas-fonds in Mali, the groundwater 
maps are not of sufficient resolution or reliability to map the potential accurately. A more 
promising route is to identify promising regions from the potential area analysis, and to use 
ground truthing validation and additional research to provide the next level of accuracy for 
specific areas. To accomplish this, field visits are essential as many other limiting factors can 
be present: political, safety, land ownership, local soil conditions, pollution, etc. 
 

ABSENCE OF HYDROLOGICAL AND OTHER CONSTRAINTS 

The multi-criteria model used in this report makes use of a limited number of layers to compute 
a suitability score. However,  there are a large number of additional factors that can constrain 
suitability, for which it is harder to obtain data, such as local political situation, safety, land 
ownership, flooding potential, detailed topography, local soil conditions, pollution, salinity, etc. 
Therefore, a local assessment will always be needed when specific sites are chosen, in which 
the full complexity of determining irrigation potential can be determined.  
 
An important limiting factor is the hydrological constraint: how much water is actually 
available in a whole catchment area to support irrigation expansion. From section 6.1, we see 
that this factor has a large impact on the result. Therefore, before decisions are made to expand 
irrigation in a certain area, a study should be done focussing on the expected impact of water 
extraction on the catchment area, groundwater levels and downstream river levels. 
 
In discussing results, a clear distinction should always be made between areas suitable for 
irrigation, and the fully realizable potential of sustainable growth for irrigation. 
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7. CONCLUSIONS 

CURRENTLY IRRIGATED AREAS IN THE DRY SEASON 

From our results, we conclude that remote sensing combined with machine learning performs 
well in the classification of irrigated areas, provided that the local effects of irrigation can be 
clearly distinguished from natural processes.  
 
The main limitations to the accuracy stem from areas where this distinction is more difficult, 
such as in valley bottoms or flood recession agriculture, both of which are common in the 
studies countries. In such areas, classifying ground truth points remotely is challenging due to 
the fact that the satellite spectral signature and timing of for example flood recession crop 
growth is very similar to natural growth.  
 
A second challenging aspect is the climate variability issue when machine learning is applied 
across a full country. In this report, this was mitigated by using multiple climate regions, at the 
cost of a significant increase in the number of required ground truth points.  
 
Finally, using just machine learning does not allow for the automated distinction between small-
scale and large-scale agriculture, or the distinction between farmer-led and government-led 
agriculture. To make these distinctions, additional geospatial information on the location and 
extent of large-scale schemes, flood recession areas, and valley bottoms is needed. A viable 
alternative, although less precise, is to use the size of patches of contiguous pixels classified as 
irrigated to distinguish between small, medium, and large-scale irrigation, as was successfully 
done in this report. 
 
Given these limitations and issues, and given the fact that machine learning performs well 
locally when provided with the right ground truth data, one important option is to focus on 
smaller areas, and on particular types of irrigation. For example, a specific model trained on a 
specific bas-fond area would perform better than a generic model trained on ground truth data 
across a large area and corresponding diversity of irrigation methods. Such a model could be 
used to monitor irrigation locally over a time period. A combination of such models could be 
used to monitor a range of regions and irrigation types. 
 
Using remote sensing and machine learning has the significant benefit that it can be automated 
and carried out over different periods, for example yearly, to determine trends. As the same set 
of ground truth data and the same trained model can be used over different years, this could be 
done by further automation of the process of classification developed in this report, by making 
use of a programming interface Google Earth Engine offers.  
 

REPLICABILITY 

An important issue is in how far these results can be replicated across time and space. First of 
all, as stated above, spatial replicability of the classification is limited because of substantial 
variation in local climate, geography, land cover, and possibly agricultural practices. 
Therefore, each region will need its own set of ground truth data for the training of the 
classification algorithm. However, this limitation only applies to the ground truth data itself. 
The machine learning methodology itself can be applied in different regions without problem, 
as long as the base data (Sentinel 2) is available. 
 
As regards replicability across time, this is only limited by the availability of data. For 
example, Sentinel 2 data started being collected after June 2015, when the first Sentinel 2 



   P a g e  | 89 

satellite was launched. As long as there are no large changes in local climate, ground truth 
data collected in a given year can be used to train a model that can then be used in other years 
as well. Collecting ground truth data is a time-consuming process, requiring multiple days per 
country for the data collected in this report. 
 

AREAS SUITABLE FOR IRRIGATION 

From the results presented in Chapter 6, it is clear that the areas suitable for irrigation 
estimated in this report are in line with other studies that use a similar multi-criteria model, 
but that the results are significantly higher than studies that incorporate hydrological 
constraints. This means that in both countries, the hydrological component is essential for 
estimates of the total realizable irrigation potential.  
 
This result underlines the importance to distinguish between areas suitable for irrigation as 
determined by all constraints under consideration, and the fully realizable potential of 

sustainable growth for irrigation. In addition to considering the other constraints mentioned 
above, to determine the scope for actual expansion of irrigation in a given area an analysis 
should be made on the catchment level to determine the total amount of water that can be 
safely used for increased irrigation without negative impact on groundwater levels or river 
flow downstream. 
 
In addition, it should be noted that there are a significant number of other, local, factors that 
form potential constraints, such as soil quality, land productivity, pollution, salinity, local 
ownership situation, detailed topography, possible market saturation, etc. Therefore, the 
suitable areas as described in this report should be used only to identify overall suitable 
regions and guide site selection for further detailed suitability study. 
 

8. RECOMMANDATIONS FOR FURTHER WORK 
From the results of this study, we can formulate a number of general recommendations. These 
are listed below. 
 

TECHNICAL DEFINITION FARMER LED IRRIGATION 

Farmer-led irrigation uses a range of technologies, for example: controlled flood recession, 
weirs and dams, water retention, and irrigation from wells or boreholes. Each of these has a 
different signature on remote sensing data, and some are harder to detect then others. It would 
be useful to conduct a study to observe the effect of each of these technologies on remote 
sensing data, as this might lead to strategies for more reliable detection of irrigation. To that 
end, it would be beneficial to form a more technical definition of farmer-led irrigation that is 
focused on remote sensing specifically, so studies of different types can be compared. For 
example, by restricting definitions to specific types of water management, and agricultural 
practices that lead to identifiable plant growth in the dry season. 
 

IMPROVE MACHINE LEARNING ALGORITHM 

In machine learning, there are a large number of possible algorithms, and an even larger number 
of possible bands. For example, in this study we used sentinel-2 data exclusively, but we could 
also have used Sentinel-1 radar data, rainfall data, solar irradiation data, humidity data, etc. It 
would be beneficial to conduct a detailed study exploring the various machine learning 
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algorithms and possible bands, in order to determine the most effective combination to use. 
This could also include ways to minimize the issue of cross-country climate variation. 
 

SEPARATE ANALYSIS OF RECEDING WATER AGRICULTURE 

Given the fact that receding water agriculture is so prevalent in both Mali and Chad, it would 
be beneficial to apply a separate analysis. This could make use of other information sources, 
such as the JRC water occurrence layers13. By restricting the analysis to only areas where water 
does not occur during the full year, it is likely that the machine learning analysis would yield a 
more accurate result. 
 

LIMIT THE REGIONAL EXTENT OF ANALYSIS 

One of the issues for this study has been the large geographic area. In a full country, there is 
substantial variability of climate and other properties, which complicates the analysis. For 
future work, it would be beneficial to focus on smaller regions inside a country. For example, 
a specific model trained on a specific bas-fond area would perform better than a generic model 
trained on ground truth data across a large area and corresponding diversity of irrigation 
methods. Such a model could be used to monitor irrigation locally over a time period. A 
combination of such models could be used to monitor a range of regions and irrigation types. 
 

IMPROVE ESTIMATES OF HYDROLOGICAL CONSTRAINTS FOR INCREASED 

IRRIGATION 

From the comparison of our results on areas suitable for increased irrigation with estimates of 
total irrigation potential, it became clear that the hydrological constraints play a major role in 
determining the latter. However, the estimates of these constraints suffer from substantial 
uncertainly, especially on the amount of water needed to satisfy environmental needs. To gain 
more confidence in the actual limits to increased irrigation, more in-depth studies are needed 
that reduce these uncertainties. 
 
 

  

 
 
13 https://developers.google.com/earth-
engine/datasets/catalog/JRC_GSW1_2_GlobalSurfaceWater 
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APPENDIX 
List of FAO AQUASTAT definitions. Source: (FAO, 2016) 
 

Table 48. List of AQUASTAT irrigation terms and definitions. 

Arable land area 

Land under temporary crops (double-cropped areas are counted only 
once), temporary meadows for mowing or pasture, land under 
market and kitchen gardens and land temporarily fallow (less than 

five years). The abandoned land resulting from shifting cultivation is 
not included. Data for arable land is not meant to indicate the amount 
of land that is potentially cultivable. 

 

Permanent crops area 

Crops are divided into temporary and permanent crops. Permanent 
crops are sown or planted once, and then occupy the land for some 

years and need not be replanted after each annual harvest, such as 
cocoa, coffee and rubber. This category includes flowering shrubs, 
fruit trees, nut trees and vines, but excludes trees grown for wood or 

timber, and permanent meadows and pastures. 

 
Cultivated area (arable land 

+ permanent crops) 

The sum of the arable land area and the area under permanent crops. 
 

Irrigation potential 

Area of land which is potentially irrigable. Country/regional studies 

assess this value according to different methods. For example, some 
consider only land resources, others consider land resources plus 
water availability, others include economical aspects in their 

assessments (such as distance and/or difference in elevation between 
the suitable land and the available water) or environmental aspects, 
etc. The figure includes the area already under agricultural water 
management. 

 
Area equipped for full 

control irrigation: total  

The sum of surface irrigation, sprinkler irrigation and localized 

irrigation. 

Area equipped for full 

control irrigation: actually 

irrigated 

Portion of the area equipped for full control irrigation that is actually 
irrigated, in a given year. It refers to physical areas. Irrigated land 

that is cultivated more than once a year is counted only once. 

Area equipped for 

irrigation: equipped 

lowland areas 

The land equipped for irrigation in lowland areas includes: (i) 
Cultivated wetland and inland valley bottoms (IVB) that have been 

equipped with water control structures for irrigation and drainage 
(intake, canals, etc.); (ii) Areas along rivers where cultivation occurs 
making use of structures built to retain receding flood water; (iii) 

Developed mangroves and equipped delta areas. 

 

Area equipped for 

irrigation: spate irrigation 

Spate irrigation (sometimes referred to as floodwater harvesting) is 
an irrigation practice that uses the floodwaters of ephemeral streams 

(wadi) and channels it through short steep canals to bunded basins 
where cropping takes place. A dam is often built in the wadi to be 
able to divert the water whenever it arrives. These systems are in 

general characterized by a very large catchment upstream (200-5000 
ha) with a ratio of “catchment area : cultivated area" = between 
100:1 - 10 000:1. There are two types of spate irrigation: 1) 

floodwater harvesting within streambeds, where turbulent channel 
flow is collected and spread through the wadi where the crops are 
planted; cross-wadi dams are constructed with stones, earth, or both, 

often reinforced with gabions; 2) floodwater diversion, where the 
floods - or spates - from the seasonal rivers are diverted into 
adjacent embanked fields for direct application. A stone or concrete 

structure raises the water level within the wadi to be diverted to the 
nearby cropping areas. 
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Area equipped for 

irrigation: total 

Area equipped to provide water (via irrigation) to crops. It includes 

areas equipped for full/partial control irrigation, equipped lowland 
areas, and areas equipped for spate irrigation. 
 

Area equipped for 

irrigation: actually irrigated 

Portion of the area equipped for irrigation that is actually irrigated, in 
a given year. It refers to physical areas. Irrigated land that is 

cultivated more than once a year is counted only once. 
 

Flood recession cropping 

area non-equipped 

Areas along rivers where cultivation occurs in the areas exposed as 
floods recedes and where nothing is undertaken to retain the 
receding water. The special case of floating rice is included in this 
category. 
 

Cultivated wetlands and 

inland valley bottoms non-

equipped 

Wetland and inland valley bottoms (IVB) that have not been equipped 

with water control structures but are used for cropping. They are 
often found in Africa. They will have limited (mostly traditional) 
arrangements to regulate water and control drainage. 
 

Total agricultural water 

managed area 

Sum of total area equipped for irrigation and areas with other forms 

of agricultural water management (non-equipped flood recession 
cropping area and non-equipped cultivated wetlands and inland valley 
bottoms) 
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